Skip to main content
Log in

Efficient Synthesis of Isoquinoline and Its Derivatives: From Metal Сatalysts to Catalyst-free Processes in Water

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Isoquinolines constitute an important class of natural alkaloids, that demonstrate a wide range of biological activities. Therefore, development of new methods for efficient synthesis of isoquinoline and its derivatives has attracted considerable attention of chemists and pharmacologists over recent years. In this review the progress of isoquinoline synthesis that provides creative inspiration and expands novel ideas for researchers in this field is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Scheme 4.
Scheme 5.
Scheme 6.
Scheme 7.
Scheme 8.
Scheme 9.
Scheme 10.
Scheme 11.
Scheme 12.
Scheme 13.
Scheme 14.
Scheme 15.
Scheme 16.
Scheme 17.
Scheme 18.
Scheme 19.
Scheme 20.
Scheme 21.
Scheme 22.
Scheme 23.
Scheme 24.
Scheme 25.
Scheme 26.
Scheme 27.
Scheme 28.
Scheme 29.
Scheme 30.
Scheme 31.
Scheme 32.

Similar content being viewed by others

REFERENCES

  1. Sreedevi, R., Saranya, S., Rohit, K., and Anilkumar, G., Adv. Synth. Catal., 2019, vol. 361, p. 2236. https://doi.org/10.1002/adsc.201801471

  2. Vinogradov, M.G., Turova, O.V., and Zlotin, S.G., Org. Biomol. Chem., 2019, vol. 17, p. 3670. https://doi.org/10.1039/C8OB03034K

  3. Groso, E.J. and Schindler, C.S., Synthesis, 2019, vol. 51, p. 1100. https://doi.org/10.1055/s-0037-1611651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zeni, G. and Larock, R.C., Chem. Rev., 2004, vol. 104, p. 2285. https://doi.org/10.1021/cr020085h

  5. Nakamura, I. and Yamamoto, Y., Chem. Rev., 2004, vol. 104, p. 2127. https://doi.org/10.1021/cr020095i

  6. Wang, S. and Xi, C., Chem. Soc. Rev., 2019, vol. 48, p. 382. https://doi.org/10.1039/C8CS00281A

  7. Xiang, Y., Wang, C., Ding, Q., and Peng, Y., Adv. Synth. Catal., 2019, vol. 361, p. 919. https://doi.org/10.1002/adsc.201800960

  8. Chavez-Santos, R.M., Reyes-Gutierrez, P.E., Torres-Ochoa, R.O., Ramírez-Apan, M.T., and Martínez, R., Chem. Pharm. Bull., 2017, vol. 65, p. 973. https://doi.org/10.1248/cpb.c17-00409

  9. Jin, T.-Y., Li, S.-Q., Jin, C.-R., Shan, H., Wang, R.-M., Zhou, M.-X., Li, A.-L., Li, L.-Y., Hu, S.-Y., and Shen, T., J. Nat. Prod., 2018, vol. 81, p. 768. https://doi.org/10.1021/acs.jnatprod.7b00762

    Article  CAS  PubMed  Google Scholar 

  10. Singha, R., Dhara, S., and Ray, J.K., Tetrahedron Lett., 2013, vol. 54, p. 4841. https://doi.org/10.1016/j.tetlet.2013.06.092

    Article  CAS  Google Scholar 

  11. Jayaraman, M., Fox, B.M., Hollingshea, M., Kohlhagen, G., Pommier, Y., and Cushman, M., J. Med. Chem., 2002, vol. 45, p. 242. https://doi.org/10.1021/jm000498f

  12. Guan, L.P., Jin, Q.H., Wang, S.F., Li, F.N., and Quan, Z.S.,Arch. Pharm., 2008, vol. 341, p. 774. https://doi.org/10.1002/ardp.200800116

  13. Zhao, Y.-H., Luo, Y., Wang, H., Wei, H., Guo, T., Tan, H., Yuan, L., and Zhang, X.-B., Anal. Chim. Acta, 2019, vol. 1065, p. 134. https://doi.org/10.1016/j.aca.2019.03.029

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, Y.-H., Li, Y., Guo, T., Tang, Z., Xie, W., and Zhao, G.,Tetrahedron Lett., 2016, vol. 57, p. 2257. https://doi.org/10.1016/j.tetlet.2016.04.037

  15. Al-Salahi, R., Abuelizz, H.A., EI Dib, R., and Marzouk, M.,Med. Chem., 2017, vol. 13, p. 85. https://doi.org/10.2174/1573406412666160610095706

  16. Mortier, J., Frederick, R., Ganef, C., Remouchamps, C., and Talaga, P., Biochem. Pharmacol., 2010, vol. 79, p. 1462. https://doi.org/10.1016/j.bcp.2010.01.007

  17. Li, Y., Zhao, Y., Luo, M., Tang, Z., Cao, C., and Deng, K.,Chin. J. Org. Chem., 2016, vol. 36, p. 2504. https://doi.org/10.6023/cjoc201604031

  18. Abuelizz, H. A., AlSalahi, R., AlAsri, J., Mortier, J., Marzouk, M., Ezzeldin, E., Ali, A.A., Khalil, M.G., Wolber, G., Ghabbour, H.A., Almehizia, A.A., and Jaleel, G.A.A., Chem. Cent. J., 2017, vol. 11, p. 103. https://doi.org/10.1186/s13065-017-0321-1

  19. Trost, B.M., Hung, C.J., and Jiao, Z., J. Am. Chem. Soc., 2019, vol. 141, p. 16085. https://doi.org/10.1021/jacs.9b08441

  20. Ancheeva, E., Mándi, A., Király, S. B., Kurtán, T., Hartmann, R., Akone, S. H., Weber, H., Daletos, G., and Proksch, P., J. Nat. Prod., 2018, vol. 81, p. 2392. https://doi.org/10.1021/acs.jnatprod.8b00373

  21. Zhao,Y.-H., Yu, Y., Guo, T., Zhou, Z., Tang, Z., and Tian, L.,Dye Pigment, 2020. https://doi.org/10.1016/j.dyepig.2020.108547

  22. Zhang, J., Zhang, Q.-Y., Tu, P.-F., Xu, F.-C., and Liang, H.,J. Nat. Prod., 2018, vol. 81, p. 364. https://doi.org/10.1016/S0040-4020(99)00648-1

  23. Zhu, Y., Yu, Y., Zhao,Y.-H., Tang, Z., and Tian, L., Russ. J. Gen. Chem., 2020, vol. 90, p. 1518. https://doi.org/10.1134/S1070363220080204

  24. Majrashi, T.A., Zulfiqar, F., Chittiboyina, A.G., Ali, Z., and Khan, I.A., Nat. Prod. Res., 2019, vol. 33, p. 2823. https://doi.org/10.1080/14786419.2018.1504045

  25. Verma, A.K., Choudhary, D., Saunthwal, R.K., Rustagi, V., Patel, M., and Tiwari, R.K., J. Org. Chem., 2013, vol. 78, p. 6657. https://doi.org/10.1021/jo4009639

    Article  CAS  PubMed  Google Scholar 

  26. Arya, P., Chou, D.T.H., and Baek, M.G., Angew. Chem., 2001, vol. 40, p. 339. https://doi.org/10.1002/1521-3773

  27. Manmade, A., Dalzell, H.C., Howes, J.F., and Razdan, R.K.,J. Med. Chem., 1981, vol. 24, p. 1437. https://doi.org/10.1021/jm00144a013

  28. Dongbang, S., Pedersen, B., and Ellman, J.A., Chem. Sci., 2019, vol. 10, p. 535. https://doi.org/10.1039/C8SC03748E

  29. Zhao, Y.-H., Yu, Y., Hu, D., Zhao, L., Xie, W., and Zhou, Z.,Asian J. Org. Chem., 2020, vol. 9, p. 953. https://doi.org/10.1002/ajoc.202000202

  30. Pampı́n, M.C., Estévez, J.C., Castedo, L., and Estévez, R.J.,Tetrahedron Lett., 2001, vol. 42, p. 2307. https://doi.org/10.1016/S0040-4039(01)00168-X

    Article  Google Scholar 

  31. Quevedo, R., Baquero, E., and Rodriguez, M., Tetrahedron Lett., 2010, vol. 51, p. 1774. https://doi.org/10.1016/j.tetlet.2010.01.115

    Article  CAS  Google Scholar 

  32. Zhang, Y., Yang, Z., Guo, L., Li, W., Cheng, X., Wang, X., Wang, Q., Hai, L., and Wu, Y., Org. Chem. Front., 2018, vol. 5, p. 1604. https://doi.org/10.1039/C8QO00193F

  33. William, C.G., Lee, S.C., Radhika, V., Jeffrey, B.E., Rongze, K., Nadene, H., and John, R.H., Bioorgan. Med. Chem., 1995, vol. 3, p. 187. https://doi.org/10.1016/0968-0896(95)00013-7

  34. Luk, L.Y.P., Bunn, S., Liscombe, D.K., Facchini, P.J., and Tanner, M.E., Biochem., 2007, vol. 46, p. 10153. https://doi.org/10.1021/bi700752n

    Article  CAS  Google Scholar 

  35. Kametani, T., Okubo, K., and Takano, S., Yakugaku Zasshi, 1969, vol. 89, p. 1048. https://doi.org/10.1248/yakushi1947.89.8_1048

    Article  CAS  PubMed  Google Scholar 

  36. Yanada, R., Obika, S., Kono, H., and Takemoto, Y., Angew. Chem., 2006, vol. 45, p. 3822. https://doi.org/10.1002/anie.200600408

  37. Ding, Q. and Wu, J., Org. Lett., 2007, vol. 9, p. 4959. https://doi.org/10.1021/ol7020669

  38. Ye, S., Wang, H., and Wu. J., Eur. J. Org. Chem., 2010, p. 6436. https://doi.org/10.1002/ejoc.201001040

  39. He, L., Nie, H., Qiu, G., Gao, Y., and Wu, J., Org. Biomol. Chem., 2014, vol. 12, p. 9045. https://doi.org/10.1039/C4OB01618A

  40. Ye, S., Zhou, H., and Wu, J., Tetrahedron Lett., 2009, vol. 65, p. 1294. https://doi.org/10.1016/j.tet.2008.12.038

    Article  CAS  Google Scholar 

  41. Pan, X., Luo, Y., and Wu, J., J. Org. Chem., 2013, vol. 78, p. 5756. https://doi.org/10.1021/jo400523v

  42. Li, Y., Qiu, G., Ding, Q., and Wu, J., Tetrahedron Lett., 2014, vol. 70, p. 4652. https://doi.org/10.1016/j.tet.2014.05.039

    Article  CAS  Google Scholar 

  43. Luo, Y. and Wu, J., Chem. Commun., 2011, vol. 47, p. 11137. https://doi.org/10.1039/C1CC14480D

  44. Hu, Y., Ding, Q., Ye, S., Peng, Y., and Wu, J., Tetrahedron Lett., 2011, vol. 67, p. 7258. https://doi.org/10.1016/j.tet.2011.07.048

    Article  CAS  Google Scholar 

  45. Ding, Q. and Wu, J., Adv. Synth. Catal., 2008, vol. 350, p. 1850. https://doi.org/10.1002/adsc.200800301

  46. Wang, H., Zhu, M., Ye, S., and Wu, J., RSC Adv., 2013, vol. 3, p. 13626. https://doi.org/10.1039/C3RA42730G

  47. Zheng, L., Ju, J., Bin, Y., and Hua, R., J. Org. Chem., 2012, vol. 77, p. 5794. https://doi.org/10.1021/jo3010414

  48. Zhou, Q., Zhang, Z., Zhou, Y., Li, S., Zhang, Y., and Wang, J.,J. Org. Chem., 2017, vol. 82, p. 48. https://doi.org/10.1021/acs.joc.6b01864

  49. Wang, Y., Patil P., Kurpiewska, P., Kalinowska-Tluscik, J., and Domling, A., Org. Lett., 2019, vol. 21, p. 3533. https://doi.org/10.1021/acs.orglett.9b00778

  50. Sha, F., and Huang, X., Angew. Chem. Int. Ed., 2009, vol. 48, p. 3458. https://doi.org/10.1002/anie.200900212

    Article  CAS  Google Scholar 

  51. Roy, S., Roy, S., Neuenswer, B., Hill, D., and Larock, R. C.,J. Comb. Chem., 2009, vol. 11, p. 1061. https://doi.org/10.1021/cc9000949

  52. Reeves, B.M., Hepburn, H.B., Grozavu, A., LindsayScott, P.J., and Donohoe, T.J., Angew. Chem. Int. Ed., 2019, vol. 58, p. 15697. https://doi.org/10.1002/anie.201908857

  53. Tang, X., Yang, M.-C., Ye, C., Liu, L., Zhou, H.-L., Jiang, X.-J., You, X.-L., Han, B., and Cui, H.-L., Org. Chem. Front., 2017, vol. 4, p. 2128. https://doi.org/10.1039/C7QO00492C

  54. Neetha, M., Aneeja, T., Afsina, C.M.A., and Anilkumar, G.,Chemcatchem, 2020, vol. 12,p. 1. https://doi.org/10.1002/cctc.202000719

  55. Hsu, Y.C., Ting, C.M., and Liu, R.S., J. Am. Chem. Soc., 2009, vol. 131, p. 2090. https://doi.org/10.1021/ja809560c

  56. Dandapani, S. and Marcaurelle, L.A., Curr. Opin. Chem. Biol., 2010, vol. 14, p. 362. https://doi.org/10.1016/j.cbpa.2010.03.018

  57. Teng, T.M., Das, A., Huple, D.B., and Liu, R.S., J. Am. Chem. Soc., 2010, vol. 132, p. 12565. https://doi.org/10.1021/ja106493h

  58. Deshmukh, D.S., Gangwar, N., and Bhanage, B.M., Eur. J. Org. Chem., 2019, vol. 18, p. 2919. https://doi.org/10.1002/ejoc.201900366

  59. Deshmukh, D.S. and Bhanage, B.M., Synthesis, 2019, vol. 51, p. 2506. https://doi.org/10.1055/s-0037-1611795

    Article  CAS  Google Scholar 

  60. Albano, G., Morelli, M., Lissia, M., and Aronica, L.A., ChemistrySelect, 2019, vol. 4, p. 2505. https://doi.org/10.1002/slct.201900524

    Article  CAS  Google Scholar 

  61. Chu, H., Xue, P., Yu, J.T., and Cheng, J., J. Org. Chem., 2016, vol. 81, p. 8009. https://doi.org/10.1021/acs.joc.6b01378

  62. Zhou, C., Jiang, J., and Wang, J., Org. Lett., 2019, vol. 21, p. 4971. https://doi.org/10.1021/acs.orglett.9b01456

  63. Xie, H., Xing, Q., Shan, Z., Xiao, F., and Deng, G., Adv. Synth. Catal., 2019, vol. 361, p. 1896. https://doi.org/10.1002/adsc.201801635

  64. Deshmukh, D. S., Yadav, P. A., and Bhanage, B. M., Org. Biomol. Chem., 2019, vol. 17, p. 3489. https://doi.org/10.1039/C9OB00174C

  65. Li, X.C., Du, C., Zhang, H., Niu, J.L., and Song, M.P., Org. Lett., 2019, vol. 21, p. 2863. https://doi.org/10.1021/acs.orglett.9b00866

  66. Zhao, Y.-H., Luo, M., Li, Y., Liu, X., Tang, Z., Deng, K., and Zhao, G., Chin. J. Chem., 2016, vol. 34, p. 857. https://doi.org/10.1002/cjoc.201600277

  67. Zhao, Y.-H., Li, Y., Luo, M., Tang, Z., and Deng, K., Synlett, 2016, vol. 27, p. 2597. https://doi.org/10.1055/s-0035-1562609

    Article  CAS  Google Scholar 

  68. Zhao, Y.-H., Luo, Y., Zhu, Y., Wang, H., Zhou, H., Tan, H., Zhou, Z., Ma, Y.-C., Xie, W., and Tang, Z., Synlett, 2018, vol. 29, p. 773. https://doi.org/10.1055/s-0036-1591743

  69. Tang, Y., Yu, Y., Wei, X., Yang, J., Zhu, Y., Zhao, Y.-H., Tang, Z., Zhou, Z., Li, X., and Yu, X., Tetrahedron Lett., 2019. https://doi.org/10.1016/j.tetlet.2019.151187.

  70. Kumar, K.S., Kumar, P.M., Reddy, M.A., Ferozuddin, M., Sreenivasulu, M., Jafar, A.A., Krishna, G.R., Reddy, C.M., Rambabu, D., Kumar, K.S., Pale, S., and Pal, M., Chem. Commun., 2011, vol. 47, p. 10263. https://doi.org/10.1039/C1CC13695J

  71. Patil, N.T., Mutyala, A.K., Konala, A., and Tella, R.B., Chem. Commun., 2012, vol. 48, p. 3094. https://doi.org/10.1039/C2CC17450B

  72. Sonawanea, A.D., Shaikha, Y.B., Garud, D.R., and Koketsu, M.,Synthesis, 2019, vol. 51, p. 500. https://doi.org/10.1055/s-0037-1610910

    Article  CAS  Google Scholar 

  73. Fernández, P., Valdés, C., Fañanás, F. J., and Rodríguez, F.,J. Org. Chem., 2019, vol. 84, p. 3184. https://doi.org/10.1021/acs.joc.8b03081

  74. Undeela, S., Chandra, R., Nanubolu, J.B., and Menon, R.S.,Org. Biomol. Chem., 2019, vol. 17, p. 369. https://doi.org/10.1039/C8OB02544D

  75. Lin, W., Hu, X.X., Zhuang, C. W., and Wang, Y.Z., Tetrahedron Lett., 2019, vol. 75 , p. 3015. https://doi.org/10.1016/j.tet.2019.04.039

    Article  CAS  Google Scholar 

  76. Hu, K., Qi, L., Yu, S., Cheng, T., Wang, X., Li, Z., Xia, Y., Chen, J., and Wu, H., Green Chem., 2017, vol. 19, p. 1740. https://doi.org/10.1039/C7GC00267J

  77. Liu, Y., Zhang, K., Jiang, W., Yang, Y., Jiang, Y., Liu, X., Xie, Y., Wu, J., Cai, J., and Xu, X., Chem. Asian J., 2017, vol. 12, p. 568. https://doi.org/10.1002/asia.201601645

    Article  CAS  PubMed  Google Scholar 

  78. Zhu, Z., Tang, X., Li, X., Wu, W., Deng, G., and Jiang, H.,J. Org. Chem., 2016, vol. 81, p. 1401. https://doi.org/10.1021/acs.joc.5b02376

  79. Jiang, H., Yang, J., Tang, X., and Wu, W., J. Org. Chem., 2016, vol. 81, p. 2053. https://doi.org/10.1021/acs.joc.5b02914

  80. Zhao, W., Qian, K., Su, C., Shao, L., Zhou, W., Cui, D., Zhang, C., and Wang, X., New J. Chem., 2019, vol. 43, p. 10162. https://doi.org/10.1039/C9NJ01882D

  81. Verma, A.K., Choudhary, D., Saunthwal, R.K., Rustagi, V., Patel, M., and Tiwari, R.K., J. Org. Chem., 2013, vol. 78, p. 6657. https://doi.org/10.1021/jo4009639

    Article  CAS  PubMed  Google Scholar 

  82. Jiang, B., Zhou, Y., Kong, Q., Jiang, H., Liu, H., and Li, J.,Molecules, 2013, vol. 18, p. 814. https://doi.org/10.3390/molecules18010814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhao, Y.-H., Li, Y., Guo, T., Tang, Z., Deng, K., and Zhao, G.,Synth. Commun., 2016, vol. 46, p. 355. https://doi.org/10.1080/00397911.2015.1137944

  84. Saisaha, P., Boerb, J.W., and Browne, W.R., Chem. Soc. Rev., 2013, vol. 42, p. 2059. https://doi.org/10.1039/C2CS35443H

  85. Mao, H., Gao, M., Liu, B., and Xu, B., Org. Chem. Front., 2016, vol. 3, p. 516. https://doi.org/10.1039/C6QO00048G

  86. Chen, Z., Ding, Q., Yu, X., and Wu, J., Adv. Synth. Catal., 2009, vol. 351, p. 1692. https://doi.org/10.1002/adsc.200900131

  87. Cheng, X., Cao, X., Zhou, S.J., Cai, B.G., He, X.K., and Xuan, J., Adv. Synth. Catal., 2019, 361, p. 1230. https://doi.org/10.1002/adsc.201801181

  88. Li, H., Liao, L., and Zhao, X., Synlett, 2019, 30, p. 1688. https://doi.org/10.1055/s-0039-1690103

  89. Wu, X., Ding, G., Yang, L., Lu, W., Li, W., Zhang, Z., and Xie, X.,Org. Lett., 2018, 20, p. 5610. https://doi.org/10.1021/acs.orglett.8b02287

  90. Hoshimoto, Y., Nishimura, C., Sasaoka, Y., Kumar, R., and Ogoshi, S., Bull. Chem. Soc. Jap., 2020, vol. 93, p. 182. https://doi.org/10.1246/bcsj.20190301

  91. Mishra, M., Twardy, D., Ellstrom, C., Wheeler, K.A., Dembinski, R., and Török, B., Green Chem., 2019, vol. 21, p. 99. https://doi.org/10.1039/C8GC02520G

  92. Mola, A.D., Tedesco, C., and Massa, A., Molecules, 2019, vol. 24, p. 2177. https://doi.org/10.3390/molecules24112177

    Article  CAS  PubMed Central  Google Scholar 

  93. Yang, J., Wei, X., Yu, Y., Zhu, Y., Zhao, Y.-H., Xie, W., and Zhao, L., Tetrahedron Lett., 2020. https://doi.org/10.1016/j.tetlet.2019.151454.

Download references

Funding

The generous financial support from the National Natural Science Foundation of China (nos. 51773057 and 21877034), Natural Science Foundation of Hunan Provincial (no. 2020JJ4028) and Hunan Provincial Education Department Scientific Research Fund (no. 18B221) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Hui Zhao or Zilong Tang.

Ethics declarations

No conflict of interests was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Guan, M., Zhao, YH. et al. Efficient Synthesis of Isoquinoline and Its Derivatives: From Metal Сatalysts to Catalyst-free Processes in Water. Russ J Gen Chem 90, 2012–2027 (2020). https://doi.org/10.1134/S1070363220100266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220100266

Keywords:

Navigation