Skip to main content
Log in

Influence of Physical and Mechanical Properties of the Substrate on the Behavior of Zr–Si–B Coatings under Sliding Friction and Cyclic Impact-Dynamic Loading

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The method of magnetron sputtering of a ZrB2–20% Si target was used to obtain coatings on substrates of molybdenum, chromium, and hard alloy. The composition, structure and tribological properties of the coatings have been studied. The influence of physical and mechanical properties of substrates on the behavior of coatings under friction sliding and impact of impact dynamic loading is established. The coating had a low-defect structure and contained a hexagonal ZrB2 phase with a crystallite size of 15–30 nm. Tribological tests of the substrates showed that, at a load of 1 N, the friction coefficient was in the range of 0.6–0.8. After coating, this value was 0.7–0.75. When using a hard alloy as a substrate in the tribocontact zone, brittle destruction of the coating was observed at the lowest penetration depth of the counterbody. In the case of coatings on substrates with low hardness and modulus of elasticity, the maximum wear depth was reached, there was a pronounced deformation, and the portion of the plastic component was reduced after coating. The resistance of substrates to impact dynamic loading at 100, 300, and 500 N regularly increased with an increase in their hardness and plasticity index. The coating obtained on a carbide substrate with a hardness of 19 GPa and a plasticity index of 0.03 showed a crater depth of 0.45 μm, which is 16 and 5 times less than for coatings on molybdenum and chromium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Broitman, E., Tengdelius, L., Hangen, U.D., et al., Scr. Mater., 2016, vol. 124, p. 117.

    Article  CAS  Google Scholar 

  2. Tengdelius, L., Broitman, E., Lu, J., et al., Acta Mater., 2016, vol. 111, p. 166.

    Article  CAS  Google Scholar 

  3. Tay, C.Y., Harris, I.R., and Wright, S.J., J. Electron. Mater., 1989, vol. 18, p. 511.

    Article  CAS  Google Scholar 

  4. Choi, H., Jang, J., Zhang, T., et al., Surf. Coat. Technol., 2014, vol. 259, p. 707.

    Article  CAS  Google Scholar 

  5. Ren, X., Shi, H., Wang, W., et al., J. Eur. Ceram. Soc., 2020, vol. 40, p. 203.

    Article  Google Scholar 

  6. Kiryukhantsev-Korneev, Ph.V., Iatsyuk, I.V., Shvindina, N.V., et al., Corros. Sci., 2017, vol. 123, p. 319.

    Article  CAS  Google Scholar 

  7. Ren, X., Sun, X., Wang, W., et al., J. Alloys Compd., 2018, vol. 769, p. 387.

    Article  CAS  Google Scholar 

  8. Aliasgarian, R., Naderi, M., Mirsalehi, S.E., et al., J. Alloys Compd., 2018, vol. 742, p. 797.

    Article  CAS  Google Scholar 

  9. Yao, X., Li, H., Zhang, Y., et al., Ceram. Int., 2012, vol. 38, p. 2095.

    Article  CAS  Google Scholar 

  10. Jinyuan, M., Min, L., Chunming, D., et al., Rare Met. Mater. Eng., 2016, vol. 45, p. 1386.

    Article  Google Scholar 

  11. Dou, H., Qiangang, F., Tianyu, L., and Mingde, T., J. Eur. Ceram. Soc., 2020, vol. 40, p. 212.

    Article  Google Scholar 

  12. Yanjiao, Y., Mingjiang, D., Chunbei, W., et al., Rare Met. Mater. Eng., 2017, vol. 46, p. 3663.

    Article  Google Scholar 

  13. Li, J., Zhang, Y., Wang, H., et al., J. Alloys Compd., 2020, vol. 824, p. 153934.

    Article  CAS  Google Scholar 

  14. Ren, Y., Qian, Y., Xu, J., et al., Ceram. Int., 2019, vol. 45, no. 12, p. 15366.

    Article  CAS  Google Scholar 

  15. Wang, Z., Niu, Y., Hu, C., et al., Ceram. Int., 2015, vol. 41, p. 14868.

    Article  CAS  Google Scholar 

  16. Kudryashov, A.E., Kiryukhantsev-Korneev, Ph.V., Petrzhik, M.I., et al., CIS Iron Steel Rev., 2019, vol. 18, p. 46.

    Article  Google Scholar 

  17. Iatsyuk, I.V., Lemesheva, M.V., Kiryukhantsev-Korneev, Ph.V., et al., IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 347, p. 012028.

  18. Kiryukhantsev-Korneev, F.V., Lemesheva, M.V., Shvindina, N.V., et al., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 6, p. 1147.

    Article  CAS  Google Scholar 

  19. Kiryukhantsev-Korneev, F.V. and Yatsyuk, I.V., Phys. At. Nucl., 2019, vol. 82, no. 11, p. 1437.

    Article  CAS  Google Scholar 

  20. Shtansky, D.V., Petrzhik, M.I., Bashkova, I.A., et al., Phys. Solid State, 2006, vol. 48, no. 7, p. 1301.

    Article  CAS  Google Scholar 

  21. Levashov, E.A., Petrzhik, M.I., Shtansky, D.V., et al., Mater. Sci. Eng., A, 2013, vol. 570, p. 51.

    Article  CAS  Google Scholar 

  22. Shtansky, D.V., Kulinich, S.A., Levashov, E.A., et al., Thin Solid Films, 2012, vols. 420–421, p. 330.

    Google Scholar 

  23. Saha, R. and Nix, W.D., Acta Mater., 2002, vol. 50, p. 23.

    Article  CAS  Google Scholar 

  24. Kiryukhantsev-Korneev, F.V. and Petrzhik, M.I., Nanotekhnol.:Nauka Proizvod., 2018, vol. 1, p. 3.

    Google Scholar 

  25. Kiryukhantsev-Korneev, F.V., Sheveiko, A.N., Komarov, V.A., et al., Russ. J. Non-Ferrous Met., 2011, vol. 52, p. 311.

    Article  Google Scholar 

  26. Kiryukhantsev-Korneev, Ph.V., Pierson, J.F., Kuptsov, K.A., et al., Appl. Surf. Sci., 2014, vol. 314, p. 104.

    Article  CAS  Google Scholar 

  27. Metotechnics. https://www.metotech.ru/molibden-opisanie.htm.

  28. Kashirtsev, V.V., Cand. Sci. (Eng.) Dissertation, Moscow, 2014.

  29. Kuksenova, L.I., Iznosostoikost’ konstruktsionnykh materialov. Uchebnoe posobie (Wear-Resistance of Structure Materials), Moscow: Bauman Moscow State Technical Univ., 2011.

  30. Kiryukhantsev-Korneev, Ph.V. and Sheveiko, A.N., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, p. 963.

    Article  CAS  Google Scholar 

  31. Xi, H.-H., He, P.-F., Wang, H.-D., et al., Int. J. Refract. Met. Hard Mater., 2020, vol. 86, p. 05095.

    Article  Google Scholar 

  32. Kumar, D.D., Kumar, N., Kalaiselvam, S., et al., Ceram. Int. 2015, vol. 41, p. 9849.

    Article  Google Scholar 

  33. Picas, J.A., Forn, A., Baile, M.T., and Martín, E., Int. J. Refract. Met. Hard Mater., 2005, vol. 23, p. 330.

    Article  CAS  Google Scholar 

  34. Leyland, A. and Matthews, A., Wear, 2000, vol. 246, p. 1.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to P. Loginov and D. Sidorenko for their help in conducting the TEM studies.

Funding

This work was financially supported by the Russian Foundation for Basic Research within the framework of project no. 19-08-00187.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. V. Kiryukhantsev-Korneev.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiryukhantsev-Korneev, P.V., Sytchenko, A.D. Influence of Physical and Mechanical Properties of the Substrate on the Behavior of Zr–Si–B Coatings under Sliding Friction and Cyclic Impact-Dynamic Loading. Prot Met Phys Chem Surf 56, 981–989 (2020). https://doi.org/10.1134/S2070205120050160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120050160

Navigation