Skip to main content
Log in

Adsorption of Zinc(II) and Chromium(III) Ions by Modified Zeolites

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The results of a study of the adsorption of zinc(II) and chromium(III) ions by zeolites modified by HCl are presented. According to the data of elemental analysis and electron spectroscopy, the zeolites contain at least 75% heulandite in their composition. The removal of aluminum ions from the tetrahedral framework of the sorbent formed by AlO4 and SiO4 occurs upon modifying the zeolites by HCl. This leads to the destruction of the main component, heulandite, and compaction of the silicate layer. The time of establishment of adsorption equilibrium in the zeolite–aqueous solution system is 90 min. The isotherms of adsorption of zinc(II) ions are obtained in a temperature range 298–318 K at pH 5.6–5.8. It is shown that the adsorption of zinc(II) ions increases with growing temperature. The isotherms of adsorption of chromium(III) ions are obtained in a temperature range 298–318 K at pH 7.6–7.9. It is found that the adsorption of chromium(III) ions decreases with increasing temperature. The differential heats of adsorption are calculated based on the isosteres of adsorption. The increase in the adsorption of chromium(III) ions is accompanied by a decrease in the differential heat of adsorption from 36.9 to 26.8 kJ/mol. This may be associated with the nonuniformity of the surface of the adsorbent, due to what the metal ions are adsorbed on less active regions of the surface as far as the growth in the saturation of more active sites. The change in the differential heat of adsorption of zinc(II) ions with the growth in the degree of filling of the surface has a nonmonotone character. In the region of low degrees of filling of the surface, the differential heat of adsorption decreases, and then increases, which is probably determined by polymolecular adsorption presuming the presence of an adsorbate–adsorbate interaction. The efficiency of treatment of industrial wastewaters of the electroplating industry in the case of the use of the modified zeolites is over 97%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Hall, J.L., J. Exp. Bot., 2002, vol. 53, no. 366, p. 1.

    Article  CAS  Google Scholar 

  2. Korte, F., Bahadir, M., Klein, W.W., Lay, J.P., Parlar, H., und Scheunert, I., Ökologische Chemie. Grundlagen und Konzepte für die ökologische Beurteilung von Chemikalien, Korte, F., Hrsg., Stuttgart, New York: Georg Thieme Verlag, 1987.

    Google Scholar 

  3. Ismael, I.S., Chin. J. Geochem., 2010, vol. 29, no. 2, p. 130.

    Article  CAS  Google Scholar 

  4. Alyuz, B. and Veli, S., J. Hazard. Mater., 2009, vol. 167, nos. 1–3, p. 482.

    Article  Google Scholar 

  5. Nibou, D., Mekatel, H., Amokrane, S., Barkat, M., and Trari, M., J. Hazard. Mater., 2010, vol. 173, nos. 1–3, p. 637.

    Article  CAS  Google Scholar 

  6. Abdelrahman, E.A., Tolan, D.A., and Nassar, M.Y., J. Inorg. Organomet. Polym., Mater., 2019, vol. 29, no. 1, p. 229.

    Article  CAS  Google Scholar 

  7. Nibou, D., Amokrane, S., Mekatel, H., and Lebaili, N., Phys. Procedia, 2009, vol. 2, no. 3, p. 1433.

    Article  CAS  Google Scholar 

  8. Shi, H.S. and Liu, Y.H., Jianzhu Cailiao Xuebao/J.Build. Mater. (Shanghai, China), 2006, vol. 9, no. 4, p. 408.

    CAS  Google Scholar 

  9. Noroozifar, M., Khorasani-Motlagh, M., Gorgij, M.N., and Naderpour, H.R., J. Hazard. Mater., 2008, vol. 155, no. 3, p. 566.

    Article  CAS  Google Scholar 

  10. Gonzalez, M.R., Pereyra, A.M., Torres Sanchez, R.M., and Basaldella, E.L., J. Colloid Interface Sci., 2013, vol. 408, p. 21.

    Article  CAS  Google Scholar 

  11. Aljerf, L., J. Environ. Manage., 2018, vol. 225, p. 120.

    Article  CAS  Google Scholar 

  12. Ma, K., Zhao, L., Jiang, Z., Huang, Y.Y., and Sun, X.P., Polym. Compos., 2018, vol. 39, no. 4, p. 1223.

    Article  CAS  Google Scholar 

  13. Pomazkina, O.I., Filatova, E.G., Lebedeva, O.V., and Pozhidaev, Yu.N., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 4, p. 582.

    Article  CAS  Google Scholar 

  14. Filatova, E.G., Pozhidaev, Yu.N., and Pomazkina, O.I., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 5, p. 858.

    Article  CAS  Google Scholar 

  15. Lur’e, Yu.Yu. and Rybnikova, A.I., Khimicheskii analiz proizvodstvennykh stochnykh vod (Chemical Analysis for Industrial Waste Waters), Moscow: Khimiya, 1974.

  16. Marczenko, Z., Spectrophotometric Determination of the Elements, Ellis Horwood Series in Analytical Chemistry, New York: John Wiley and Sons, 1976.

  17. Vasil’ev, V.P., Analiticheskaya khimiya (Analytical Chemistry), Moscow: Drofa, 2004, part 1 and part 2.

  18. Filatova, E.G., Pozhidaev, Yu.N., and Pomazkina, O.I., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 3, p. 438.

    Article  CAS  Google Scholar 

  19. Pomazkina, O.I., Filatova, E.G., and Pozhidaev, Yu.N., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 4, p. 518.

    Article  CAS  Google Scholar 

  20. Filatova, E.G., Pomazkina, O.I., and Pozhidaev, Yu.N., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 6, p. 999.

    Article  CAS  Google Scholar 

  21. Tsivadze, A.Yu., Rusanov, A.I., Fomkin, A.A., et al., Fizicheskaya khimiya adsorbtsionnykh yavlenii (Physical Chemistry of Adsorption Phenomena), Moscow: Granitsa, 2011.

  22. Sheela, T., Nayaka, Y.A., Viswanatha, R., Basavanna, S., and Venkatesha, T.G., Powder Technol., 2012, vol. 217, p. 163.

    Article  CAS  Google Scholar 

  23. Al-Othman, Z.A. and Naushad, M., Chem. Eng. J., 2012, vol. 184, p. 238.

    Article  CAS  Google Scholar 

  24. Frolov, Yu.G., Kurs kolloidnoi khimii (Course of Colloid Chemistry), Moscow: Khimiya, 1982.

  25. Zhao, G., Li, J., Ren, X., Chen, C., and Wang, X., Environ. Sci. Technol., 2011, vol. 45, no. 24, p. 10454.

    Article  CAS  Google Scholar 

  26. Kubilay, S., Gurkan, R., Savran, A., and Sahan, T., Adsorption, 2007, vol. 13, p. 41.

    Article  CAS  Google Scholar 

  27. Gode, F. and Pehlivan, E., J. Hazard. Mater., 2006, vol. 136, p. 330.

    Article  CAS  Google Scholar 

  28. Potapov, S.V., Fomkin, A.A., Sinitsyn, V.A., and Shkolin, A.V., Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Ser. “Mashinostr.”, 2010, vol. 2010, no. k, p. 178.

  29. Muminov, S.Z. and Khandamov, D.A., Sorbtsionnye Khromatogr.Protsessy, 2010, vol. 10, no. 5, p. 669.

    Google Scholar 

  30. Makarevich, N.A. and Bogdanovich, N.I., Teoreticheskie osnovy adsorbtsii (Theoretical Fundamentals for Adsorption), Arkhangelsk: Northern (Arctic) Federal Univ. Named after M.V. Lomonosov, 2015.

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research, project 18-08-00718.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Filatova.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatova, E.G., Pozhidaev, Y.N. & Pomazkina, O.I. Adsorption of Zinc(II) and Chromium(III) Ions by Modified Zeolites. Prot Met Phys Chem Surf 56, 911–916 (2020). https://doi.org/10.1134/S2070205120050123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120050123

Navigation