Skip to main content
Log in

Synthesis, Structure, and Properties of Titanium Diboride Nanoparticles

  • Published:
Inorganic Materials Aims and scope

Abstract—

The products of reaction between TiCl4 and NaBH4 in NaCl/KCl or KBr ionic melts at 973 and 1023 K under an argon pressure of 5 MPa have been characterized by various physicochemical analysis techniques. The results demonstrate that these conditions lead to the formation of TiB2 nanoparticles with hexagonal symmetry (sp. gr. P6/mmm, AlB2 structure) and lattice parameters a = 0.3022–0.3025 nm and с = 0.3214–0.3221 nm. The average diameters of the TiB2 nanoparticles evaluated from electron microscopy, specific surface area, and X-ray diffraction (crystallite size) data for the two synthesis temperatures are ~10 and ~15, ~12 and ~17, and ~5 and ~10 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Berger, M., Hogmark, S., Karlsson, L., and Larsson, M., Low stress TiB2 coatings with improved tribological properties, Thin Solid Films, 2001, vol. 401, nos. 1–2, pp. 179–186.

    Article  CAS  Google Scholar 

  2. Agarwal, A. and Dahotre, N.B., Laser surface engineering of steel for hard refractory ceramic composite coating, Int. J. Refract. Met. Hard Mater., 1999, vol. 17, pp. 283–293.

    Article  CAS  Google Scholar 

  3. Cardarelli, F., Material Handbook, Charm: Springer, 2018, pp. 936–937.

  4. Efimova, K.A., Galevskii, G.V., and Rudneva, V.V., Current status of titanium diboride production: evaluation, predominant trends, and future prospects, Nauchno-Tekh. Vedomosti SPbPU.Estestv. Inzh. Nauki, 2017, vol. 23, no. 2, pp. 144–158.https://doi.org/10.18721/JEST.230213

    Article  Google Scholar 

  5. Samsonov, G.V., Serebryakova, T.I., and Neronov, V.A., Boridy (Borides), Moscow: Atomizdat, 1975.

    Google Scholar 

  6. Andrievski, R.A. and Khatchoyan, A.V., Nanomaterials in Extreme Environments, Fundamentals and Applications. Berlin: Springer, 2016.https://doi.org/10.1007/978-3-319-25331-2

  7. Andrievskii, R.A., Nanostructured titanium, zirconium, and hafnium diborides: synthesis, properties, size effects, and stability, Usp. Khim., 2015, vol. 84, no. 5, pp. 540–554.https://doi.org/10.1070/RCR4469

    Article  CAS  Google Scholar 

  8. Jensen, J.A., Gozum, J.E., Pollina, D.M., and Girolami, G.S., Titanium, zirconium and hafnium tetrahydroborates as “tailored” CVD precursors for metal diboride thin films, J. Am. Chem. Soc., 1988, vol. 110, no. 5, pp. 1643–1644.https://doi.org/10.1021/ja00213a058

    Article  CAS  Google Scholar 

  9. Andrievski, R.A., Kalinnikov, G.V., Kravchenko, S.E., Tarasov, B.P., and Shilkin, S.P., Synthesis of boride ultrafine powders and films, Abstracts Papers Am. Chem. Soc., 1995, vol. 210, p. 156-PMSE (2).

  10. Kim, J.W., Shim, J.-H., Ahn, J.-P., Cho, Y.W., Kim, J.-H., and Oh, K.H., Mechanochemical synthesis and characterization of TiB2 and VB2 nanopowders, Mater. Lett., 2008, vol. 62, pp. 2461–2464.https://doi.org/10.1016/j.matlet.2007.12.022

    Article  CAS  Google Scholar 

  11. Pan, W.Y., Qian, W.B., Mao, Y.J., Liu, B.H., and Li, Z.P., Low-temperature synthesis of nanosized metal borides through reaction of lithium borohydride with metal hydroxides or oxides, J. Alloys Compd., 2015, vol. 651, pp. 661–672.https://doi.org/10.1016/j.jallcom.2015.08.149

    Article  CAS  Google Scholar 

  12. Tang, W.M., Zheng, Z.X., Wu, Y.C., Wang, J.M., Lű, J., and Liu, J.W., Synthesis of TiB2 nanocrystalline powder by mechanical alloying, Trans. Nonferrous Met. Soc. China, 2006, vol. 16, pp. 613–617.

    Article  CAS  Google Scholar 

  13. Chen, L., Gu, Y., Qian, Y., Chi, L., Yang, Z., and Ma, J., A facile one-step route to nanocrystalline TiB2 powders, Mater. Res. Bull., 2004, vol. 39, pp. 609–613.https://doi.org/10.1016/j.materresbull.2003.12.005

    Article  CAS  Google Scholar 

  14. Kravchenko, S.E., Torbov, V.I., and Shilkin, S.P., Preparation of titanium diboride nanopowder, Inorg. Mater., 2010, vol. 46, no. 6, pp. 614–616.

    Article  CAS  Google Scholar 

  15. Chen, L., Gu, Y., Shi, L., Yang, Z., Ma, J., and Qian, Y., A Reduction–boronation route to nanocrystalline titanium diboride, Solid State Commun., 2004, vol. 130, pp. 231–233.https://doi.org/10.1016/j.ssc.2004.01.037

    Article  CAS  Google Scholar 

  16. Gorlanov, E.S., Bazhin, V.Yu., and Fedorov, S.N., Carbothermic synthesis of titanium diboride: upgrade, J. Sib. Fed. Univ. Chem., 2018, vol. 11, no. 2, pp. 156–166.https://doi.org/10.17516/1998-2836-0065

    Article  Google Scholar 

  17. Javadi, A., Pan, S., Cao, C., Yao, G., and Li, X., Facile synthesis of 10 nm surface clean TiB2 nanoparticles, Mater. Lett., 2018, vol. 229, pp. 107–110.https://doi.org/10.1016/j.matlet.2018.06.054

    Article  CAS  Google Scholar 

  18. Volkova, L.S., Shulga, Yu.M., and Shilkin, S.P., Synthesis of nano-sized titanium diboride in a melt of anhydrous sodium tetraborate, Russ. J. Gen. Chem., 2012, vol. 82, no. 5, pp. 819–821.

    Article  CAS  Google Scholar 

  19. Fokin, V.N., Fokina, E.E., and Shilkin, S.P., Synthesis of coarsely crystalline metal hydrides, Russ. J. Gen. Chem., 1996, vol. 66, no. 8, pp. 1210–1212.

    Google Scholar 

  20. Fokin, V.N., Fokina, E.E., Tarasov, B.P., and Shilkin, S.P., Synthesis of the tetragonal titanium dihydride in ultradispersed state, Int. J. Hydrogen Energy, 1999, vol. 24, nos. 2–3, pp. 111–114.https://doi.org/10.1016/S0360-3199(98)00070-6

    Article  CAS  Google Scholar 

  21. Fokin, V.N., Troitskaya, S.L., Shilkin, S.P., Fokina, E.E., and Rumynskaya, Z.A., Reaction of titanium hydride with oxygen, Zh. Obshch. Khim., 1992, vol. 62, no. 8, pp. 1719–1725.22. NIST–JANAF Thermochemical Tables, 1998. https://doi.org/10.18434/T42S31

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Shared Analytical Facilities Center, Institute of Problems of Chemical Physics, Russian Academy of Sciences.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research targets for the Institute of Problems of Chemical Physics, Russian Academy of Sciences (theme state registration no. AAAA-A19-119061890019-5) and the Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences (theme no. 44.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Shilkin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinokurov, A.A., Kovalev, D.Y., Korobov, I.I. et al. Synthesis, Structure, and Properties of Titanium Diboride Nanoparticles. Inorg Mater 56, 1127–1132 (2020). https://doi.org/10.1134/S0020168520110163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520110163

Keywords:

Navigation