Skip to main content

Advertisement

Log in

Higher structural connectivity and resistance against invasions of soil bioengineering over hard-engineering for riverbank stabilisation

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Riparian corridors play an important role for the maintenance of regional biodiversity and ecosystem functions. Riparian forests are even the only semi-natural vegetation strips remaining in many agricultural or urbanised landscapes. In such landscapes, the spatial continuity of riparian vegetation is frequently broken by the construction of stabilisation structures engineered for erosion control. Here, we examined the effects of different riverbank stabilisation structures—fascines (soil bioengineering), ripraps (hard engineering), and mixed-technique (lower-bank ripraps with upper-bank plantings)—on the structural connectivity of their respective riverbanks. We first revisited previously studied stabilisation structures to extend their vegetation sampling to their adjacent riverbanks. Then, for each type of stabilisation structure, we compared community composition, richness and abundance of native and invasive alien species (IAS), and cover of vegetation strata (herbaceous, shrub and tree) between stabilised embankments and their upstream and downstream banks. Results indicated that, although the composition of fascine banks differed from that of their adjacent riverbanks, they fitted nicely in the structural continuity of their riparian surroundings. Differences were likely explained by the proportion of fast-growing woody species (e.g. willows) planted in fascines, which also induced strong reductions in IAS richness and abundances; i.e. propagule “sinks”. Conversely, ripraps broke the structural continuity of riverbanks and were heavily dominated by IAS while mixed-technique banks displayed intermediate characteristics. Consequently, we argued that fascines may be the riverbank stabilisation structures displaying highest ecological benefits in terms of habitat quality and connectivity and should be preferred over the other investigated engineering techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used in this study will be deposited in a public repository upon acceptance of a final version of this manuscript.

Code availability

The R scripts used in this study will be available online upon acceptance of a final version of this manuscript.

References

  • Aguilera M, Arias R, Manzur T (2019) Mapping microhabitat thermal patterns in artificial breakwaters: alteration of intertidal biodiversity by higher rock temperature. Ecol Evol 9:1–13

    Article  Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  • Anderson MJ (2017) Permutational Multivariate Analysis of Variance (PERMANOVA). In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels J (eds) Wiley statsRef: statistics reference online. Wiley, Hoboken, pp 1–15

    Google Scholar 

  • Arsénio P, Rodríguez-González PM, Bernez I, Dias F, Bugalho MN, Dufour S (2019) Riparian vegetation restoration: does social perception reflect ecological value? River Res Appl 36:1–19

    Google Scholar 

  • Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc Ecol 22:1117–1129

    Article  Google Scholar 

  • Beier P, Majka DR, Spencer W (2008) Forks in the road: choices in procedures for designing wildland linkages. Conserv Biol 22:836–851

    Article  PubMed  Google Scholar 

  • Best J (2019) Anthropogenic stresses on the world’s big rivers. Nat Geosci 12:7–21

    Article  CAS  Google Scholar 

  • Bonham CD (2013) Measurements for terrestrial vegetation. Wiley, Chichester, p 246

    Book  Google Scholar 

  • Borcherding J, Staas S, Krüger S, Ondračková M, Šlapanský L, Jurajda P (2011) Non-native Gobiid species in the lower River Rhine (Germany): recent range extensions and densities. J Appl Ichthyol 27:153–155

    Article  Google Scholar 

  • Buckland ST, Borchers DL, Johnston A, Henrys PA, Marques TA (2007) Line transect methods for plant surveys. Biometrics 63:989–998

    Article  CAS  PubMed  Google Scholar 

  • Byun C, de Blois S, Brisson J (2015) Interactions between abiotic constraint, propagule pressure, and biotic resistance regulate plant invasion. Oecologia 178:285–296

    Article  PubMed  Google Scholar 

  • Cavaillé P, Dommanget F, Daumergue N, Loucougaray G, Spiegelberger T, Tabacchi E, Evette A (2013) Biodiversity assessment following a naturality gradient of riverbank protection structures in French prealps rivers. Ecol Eng 53:23–30

    Article  Google Scholar 

  • Cavaillé P, Ducasse L, Breton V, Dommanget F, Tabacchi E, Evette A (2015) Functional and taxonomic plant diversity for riverbank protection works: bioengineering techniques close to natural banks and beyond hard engineering. J Environ Manag 151:65–75

    Article  Google Scholar 

  • Cavaillé P, Dumont B, Van Looy K, Floury M, Tabacchi E, Evette A (2018) Influence of riverbank stabilization techniques on taxonomic and functional macrobenthic communities. Hydrobiologia 807:19–35

    Article  Google Scholar 

  • Dommanget F, Evette A, Breton V, Daumergue N, Forestier O, Poupart P, Martin F-M, Navas M (2019) Fast-growing willows significantly reduce invasive knotweed spread. J Environ Manag 231:1–9

    Article  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  PubMed  Google Scholar 

  • Elosegi A, Díez J, Mutz M (2010) Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia 657:199–215

    Article  Google Scholar 

  • ESRI (2019) ArcGIS (v.10.7.1). Environmental Systems Resource Institute, Redlands

    Google Scholar 

  • Evette A, Labonne S, Rey F, Liebault F, Jancke O, Girel J (2009) History of bioengineering techniques for erosion control in rivers in Western Europe. Environ Manag 43:972

    Article  Google Scholar 

  • Evette A, Recking A, Piton G, Rauch HP, Frossard PA, Jaymond D (2018) The limits of mechanical resistance in bioengineering for riverbank protection. In: IALCCE-2018, 6th international symposium on life-cycle civil engineering. Ghent, Belgium. pp 1–6

  • Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21:1003–1015

    Article  Google Scholar 

  • Fremier AK, Kiparsky M, Gmur S, Aycrigg J, Craig RK, Svancara LK, Goble DD, Cosens B, Davis FW, Scott JM (2015) A riparian conservation network for ecological resilience. Biol Conserv 191:29–37

    Article  Google Scholar 

  • Gargominy O, Tercerie S, Régnier C, Ramage T, Dupont P, Daszkiewicz P, Poncet L (2019) TAXREF v13, référentiel taxonomique pour la France: méthodologie, mise en oeuvre et diffusion. Muséum national d’Histoire naturelle, Paris, p 63

    Google Scholar 

  • Gilbert-Norton L, Watson R, Stevens JR, Beard KH (2010) A meta-analytic review of corridor effectiveness. Conserv Biol 24:660–668

    Article  PubMed  Google Scholar 

  • Golfieri B, Surian N, Hardersen S (2018) Towards a more comprehensive assessment of river corridor conditions: a comparison between the Morphological Quality Index and three biotic indices. Ecol Indic 84:525–534

    Article  Google Scholar 

  • González E, Felipe-Lucia MR, Bourgeois B, Boz B, Nilsson C, Palmer G, Sher AA (2017) Integrative conservation of riparian zones. Biol Conserv 211:20–29

    Article  Google Scholar 

  • González Del Tánago M, García de Jalón D (2011) Riparian Quality Index (RQI): a methodology for characterising and assessing the environmental conditions of riparian zones. Limnetica 30:0235–0254

    Article  Google Scholar 

  • Gurnell A (2014) Plants as river system engineers. Earth Surf Process Landf 39:4–25

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Jan SL, Shieh G (2014) Sample size determinations for Welch’s test in one-way heteroscedastic ANOVA. Br J Math Stat Psychol 67:72–93

    Article  PubMed  Google Scholar 

  • Janssen P, Cavaillé P, Bray F, Evette A (2019) Soil bioengineering techniques enhance riparian habitat quality and multi-taxonomic diversity in the foothills of the Alps and Jura Mountains. Ecol Eng 133:1–9

    Article  Google Scholar 

  • Lambeets K, Vandegehuchte ML, Maelfait J-P, Bonte D (2009) Integrating environmental conditions and functional life-history traits for riparian arthropod conservation planning. Biol Conserv 142:625–637

    Article  Google Scholar 

  • Lavaine C, Evette A, Piégay H (2015) European Tamaricaceae in bioengineering on dry soils. Environ Manag 56:221–232

    Article  Google Scholar 

  • Lees AC, Peres CA (2008) Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conserv Biol 22:439–449

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam, p 870

    Google Scholar 

  • Li M-H, Eddleman KE (2002) Biotechnical engineering as an alternative to traditional engineering methods: a biotechnical streambank stabilization design approach. Landsc Urban Plan 60:225–242

    Article  Google Scholar 

  • Li X, Zhang L, Zhang Z (2006) Soil bioengineering and the ecological restoration of riverbanks at the Airport Town, Shanghai, China. Ecol Eng 26:304–314

    Article  CAS  Google Scholar 

  • Meek CS, Richardson DM, Mucina L (2010) A river runs through it: land-use and the composition of vegetation along a riparian corridor in the Cape Floristic Region, South Africa. Biol Conserv 143:156–164

    Article  Google Scholar 

  • Menéndez R, Thomas CD (2000) Metapopulation structure depends on spatial scale in the host-specific moth Wheeleria spilodactylus (Lepidoptera: Pterophoridae). J Anim Ecol 69:935–951

    Article  Google Scholar 

  • Mitchell MG, Bennett EM, Gonzalez A (2013) Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16:894–908

    Article  Google Scholar 

  • Naiman RJ, Decamps H (1997) The ecology of interfaces: Riparian zones. Annu Rev Ecol Syst 28:621–658

    Article  Google Scholar 

  • Naiman RJ, Decamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecol Appl 3:209–212

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara R, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) Package ‘vegan’: Community ecology package (v.2.5–6). Vegan Development Team. https://github.com/vegandevs/vegan

  • Pinto AAS, Fernandes LFS, Maia R (2016) Monitoring methodology of interventions for riverbanks stabilization: assessment of technical solutions performance. Water Resour Manag 30:5281–5298

    Article  Google Scholar 

  • Pinto AAS, Fernandes LFS, de Oliveira Maia RJF (2019) A method for selecting suitable technical solutions to support sustainable riverbank stabilisation. Area 51:285–298

    Article  Google Scholar 

  • Pyšek P, Bacher S, Chytrý M, Jarošík V, Wild J, Celesti-Grapow L, Gassó N, Kenis M, Lambdon PW, Nentwig W, Pergl J, Roques A, Sádlo J, Solarz W, Vilà M, Hulme PE (2010) Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Glob Ecol Biogeogr 19:317–331

    Article  Google Scholar 

  • R Development Core Team (2019) R: a language and environment for statistical computing (v.3.6.2). R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Recking A, Piton G, Montabonnet L, Posi S, Evette A (2019) Design of fascines for riverbank protection in alpine rivers: insight from flume experiments. Ecol Eng 138:323–333

    Article  Google Scholar 

  • Reid D, Church M (2015) Geomorphic and ecological consequences of riprap placement in river systems. J Am Water Resour Assoc 51:1043–1059

    Article  Google Scholar 

  • Rey F, Bifulco C, Bischetti GB, Bourrier F, De Cesare G, Florineth F, Graf F, Marden M, Mickovski SB, Phillips C, Peklo K, Poesen J, Polster D, Preti F, Rauch HP, Raymond P, Sangalli P, Tardio G, Stokes A (2019) Soil and water bioengineering: practice and research needs for reconciling natural hazard control and ecological restoration. Sci Total Environ 648:1210–1218

    Article  CAS  PubMed  Google Scholar 

  • Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP, Pyšek P, Hobbs RJ (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers Distrib 13:126–139

    Article  Google Scholar 

  • Richards-Zawacki CL (2009) Effects of slope and riparian habitat connectivity on gene flow in an endangered Panamanian frog, Atelopus varius. Divers Distrib 15:796–806

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  CAS  PubMed  Google Scholar 

  • Sheskin DJ (2003) Handbook of parametric and nonparametric statistical procedures, 3rd edn. Chapman & Hall/CRC, Boca Raton, p 1184

    Book  Google Scholar 

  • Shingala MC, Rajyaguru A (2015) Comparison of post hoc tests for unequal variance. Int J New Technol Sci Eng 2:22–33

    Google Scholar 

  • Sutherland C, Fuller AK, Royle JA (2015) Modelling non-Euclidean movement and landscape connectivity in highly structured ecological networks. Methods Ecol Evol 6:169–177

    Article  Google Scholar 

  • Swan CM, Brown BL (2017) Metacommunity theory meets restoration: isolation may mediate how ecological communities respond to stream restoration. Ecol Appl 27:2209–2219

    Article  PubMed  Google Scholar 

  • Tabacchi E, Planty-Tabacchi A-M, Décamps O (1990) Continuity and discontinuity of the riparian vegetation along a fluvial corridor. Landsc Ecol 5:9–20

    Article  Google Scholar 

  • Tabacchi E, Correll DL, Hauer R, Pinay G, Planty-Tabacchi A-M, Wissmar RC (1998) Development, maintenance and role of riparian vegetation in the river landscape. Freshw Biol 40:497–516

    Article  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Tickner DP, Angold PG, Gurnell AM, Mountford JO (2001) Riparian plant invasions: hydrogeomorphological control and ecological impacts. Prog Phys Geogr 25:22–52

    Article  Google Scholar 

  • Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19

    Article  Google Scholar 

  • Tisserand M, Janssen P, Evette A, González E, Cavaillé P, Poulin M (2020) Diversity and succession of riparian plant communities along riverbanks bioengineered for erosion control: a case study in the foothills of the Alps and the Jura Mountains. Ecol Eng 152:105880

    Article  Google Scholar 

  • Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv 29:308–330

    Article  Google Scholar 

  • Tonkin JD, Merritt DM, Olden JD, Reynolds LV, Lytle DA (2018) Flow regime alteration degrades ecological networks in riparian ecosystems. Nat Ecol Evol 2:86–93

    Article  PubMed  Google Scholar 

  • Valle I, Buss D, Baptista D (2013) The influence of connectivity in forest patches, and riparian vegetation width on stream macroinvertebrate fauna. Braz J Biol 73:231–238

    Article  CAS  PubMed  Google Scholar 

  • Van Looy K, Honnay O, Pedroli B, Muller S (2006) Order and disorder in the river continuum: the contribution of continuity and connectivity to floodplain meadow biodiversity. J Biogeogr 33:1615–1627

    Article  Google Scholar 

  • Van Looy K, Cavillon C, Tormos T, Piffady J, Landry P, Souchon Y (2013) A scale-sensitive connectivity analysis to identify ecological networks and conservation value in river networks. Landsc Ecol 28:1239–1249

    Article  Google Scholar 

  • Vilà M, Ibáñez I (2011) Plant invasions in the landscape. Landsc Ecol 26:461–472

    Article  Google Scholar 

  • von der Thannen M, Hoerbinger S, Paratscha R, Smutny R, Lampalzer T, Strauss A, Rauch HP (2017) Development of an environmental life cycle assessment model for soil bioengineering constructions. Eur J Environ Civil Eng 24:141–155

    Article  Google Scholar 

  • Ward JV, Stanford JA (1995) Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regul Rivers Res Manag 11:105–119

    Article  Google Scholar 

  • Wissmar RC, Beschta RL (1998) Restoration and management of riparian ecosystems: a catchment perspective. Freshw Biol 40:571–585

    Article  Google Scholar 

  • Wollny JT, Otte A, Harvolk-Schöning S (2019) Dominance of competitors in riparian plant species composition along constructed banks of the German rivers Main and Danube. Ecol Eng 127:324–337

    Article  Google Scholar 

  • Zhao J, Wang R, Luo P, Xing L, Sun T (2017) Visual ecology: exploring the relationships between ecological quality and aesthetic preference. Landsc Ecol Eng 13:107–118

    Article  Google Scholar 

  • Zimmermann NE, Kienast F (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. J Veg Sci 10:469–482

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to Paul Cavaillé, Nathan Daumergue, Gilles Favier, Delphine Jaymond, Martin Fargeat and Timothée Herviault for their help at various stages of this work. We also thank Renaud Jaunatre for his helpful comments on the manuscript. This work was part of a project (Trame bleue : espaces et continuités) funded by the European Union through the European Regional Development Fund, the Auvergne-Rhône-Alpes region and the Agence de l’Eau Rhône-Méditerranée-Corse. The work in this study complied with current French legislation.

Funding

This work was part of a project (Trame bleue: espaces et continuités) funded by the European Union through the ERDF, the Auvergne-Rhône-Alpes region and the Agence de l’Eau Rhône-Méditerranée-Corse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François-Marie Martin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, FM., Janssen, P., Bergès, L. et al. Higher structural connectivity and resistance against invasions of soil bioengineering over hard-engineering for riverbank stabilisation. Wetlands Ecol Manage 29, 27–39 (2021). https://doi.org/10.1007/s11273-020-09765-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-020-09765-6

Keywords

Navigation