Skip to main content
Log in

Stability analysis of switched fractional-order continuous-time systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a class of switched fractional-order continuous-time systems with order \(0<\alpha <1\) is investigated. First, an interesting property of fractional calculus is revealed, that is, unlike integer-order integral, it does not hold that \(_{t_{0}}D^{-\alpha }_{t}f(t)={_{t_{0}}}D^{-\alpha }_{t_1}f(t)+{_{t_{1}}}D^{-\alpha }_{t}f(t)\) for \(\alpha >0,~t_0<t_1<t\), not to mention fractional derivative. Then, a general formula of solutions for a piecewise-defined differential function with Caputo fractional derivative is introduced. After that, based on the derived equivalent solution of fractional-order piecewise-defined functions, the problem of finite-time stability for a class of switched fractional-order systems is reconsidered. Finally, two illustrative examples are provided to demonstrate the effectiveness of the presented sufficient conditions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oumbé Tékam, G., Kitio Kwuimy, C., Woafo, P.: Analysis of tristable energy harvesting system having fractional order viscoelastic material. Chaos Interdiscip. J. Nonlinear Sci. 25(1), 191–206 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Bagley, R.L., Calico, R.: Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 14(2), 304–311 (1991)

    Google Scholar 

  3. Machado, J., Mata, M.E., Lopes, A.M.: Fractional state space analysis of economic systems. Entropy 17(8), 5402–5421 (2015)

    Google Scholar 

  4. Radwan, A.G., Emira, A.A., AbdelAty, A.M., Azar, A.T.: Modeling and analysis of fractional order DC–DC converter. ISA Trans. 82, 184–199 (2018)

    Google Scholar 

  5. Moreles, M.A., Lainez, R.: Mathematical modelling of fractional order circuit elements and bioimpedance applications. Commun. Nonlinear Sci. Numer. Simul. 46, 81–88 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electroanal. Chem. Interfac. Electrochem. 33(2), 253–265 (1971)

    Google Scholar 

  7. Huang, C., Dong, L.: Beam propagation management in a fractional Schrödinger equation. Sci. Rep. 7(1), 1–8 (2017)

    Google Scholar 

  8. Zhang, X., Han, Q.: Network-based \({H}_{\infty }\) filtering using a logic jumping-like trigger. Automatica 49(5), 1428–1435 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Dai, Y., Kim, Y., Wee, S., Lee, D., Lee, S.: A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model. ISA Trans. 56, 123–134 (2015)

    Google Scholar 

  10. Hernandez-Vargas, E., Colaneri, P., Middleton, R., Blanchini, F.: Discrete-time control for switched positive systems with application to mitigating viral escape. Int. J. Robust Nonlinear Control 21(10), 1093–1111 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Ge, X., Han, Q., Zhang, X.: Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delays. IEEE Trans. Ind. Electron. 65(4), 3417–3426 (2017)

    Google Scholar 

  12. Qi, Y., Zeng, P., Bao, W., Feng, Z.: Event-triggered robust \({H}_{\infty }\) control for uncertain switched linear systems. Int. J. Syst. Sci. 48(15), 3172–3185 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Vu, L., Chatterjee, D., Liberzon, D.: Input-to-state stability of switched systems and switching adaptive control. Automatica 43(4), 639–646 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Lin, H., Antsaklis, P.J.: Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans. Autom. Control 54(2), 308–322 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Kundu, A.: A new condition for stability of switched linear systems under restricted minimum dwell time switching. Syst. Control Lett. 135, 104597 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Zhang, J., Sun, Y., Meng, F.: State bounding for discrete-time switched nonlinear time-varying systems using ADT method. Appl. Math. Comput. 372, 125002 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Lyu, X., Ai, Q., Yan, Z., He, S., Luan, X., Liu, F.: Finite-time asynchronous resilient observer design of a class of non-linear switched systems with time-delays and uncertainties. IET Control Theory Appl. 14(7), 952–963 (2020)

    Google Scholar 

  18. Kaczorek, T.: Stability of positive fractional switched continuous-time linear systems. Bull. Pol. Acad. Sci. Techn. Sci. 61(2), 349–352 (2013)

    Google Scholar 

  19. Zhao, X., Yin, Y., Zheng, X.: State-dependent switching control of switched positive fractional-order systems. ISA Trans. 62, 103–108 (2016)

    Google Scholar 

  20. Balochian, S., Sedigh, A.K.: Sufficient condition for stabilization of linear time invariant fractional order switched systems and variable structure control stabilizers. ISA Trans. 51(1), 65–73 (2012)

    Google Scholar 

  21. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, Berlin (2010)

    MATH  Google Scholar 

  22. Du, M., Wang, Z.: Initialized fractional differential equations with Riemann–Liouville fractional-order derivative. Eur. Phys. J. Spec. Top. 193(1), 49–60 (2011)

    Google Scholar 

  23. Chen, L., Yin, H., Wu, R., Yin, L., Chen, Y.: Robust dissipativity and dissipation of a class of fractional-order uncertain linear systems. IET Control Theory Appl. 13(10), 1454–1465 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Fe\(\breve{\text{c}}\), M., Zhou, Y., Wang, J., et al.: On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17(7), 3050–3060 (2012)

  25. Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109(3), 973–1033 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Ahmad, B., Sivasundaram, S.: Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations. Nonlinear Anal. Hybrid Syst. 3(3), 251–258 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Benchohra, M., Seba, D.: Impulsive fractional differential equations in Banach spaces, electron. J. Qual. Theo. Differ. Equa. Spec. Edit. 8, 1–14 (2009)

    MATH  Google Scholar 

  28. Balachandran, K., Kiruthika, S.: Existence of solutions of abstract fractional impulsive semilinear evolution equations. Electron. J. Qual. Theory Differ. Equ. 2010(4), 1–12 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Wang, G., Zhang, L., Song, G.: Systems of first order impulsive functional differential equations with deviating arguments and nonlinear boundary conditions. Nonlinear Anal. Theory Methods Appl. 74(3), 974–982 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Hu, J.: Comment on “Exponential ultimate boundedness of fractional-order differential system via periodically intermittent control” [Nonlinear Dyn 2019;92(2), 247–265]. Nonlinear Dynamics, 2020

  31. Zhang, J., Zhao, X., Chen, Y.: Finite-time stability and stabilization of fractional order positive switched systems. Circuits Syst. Signal Process. 35(7), 2450–2470 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Liu, L., Cao, X., Fu, Z., Song, S., Xing, H.: Guaranteed cost finite-time control of fractional-order nonlinear positive switched systems with D-perturbations via MDADT. J. Syst. Sci. Complex. 32(3), 857–874 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Sakthivel, R., Mohanapriya, S., Ahn, C.K., Karimi, H.: Output tracking control for fractional-order positive switched systems with input time delay. IEEE Trans. Circuits Syst. II Express Briefs 66(6), 1013–1017 (2018)

    Google Scholar 

  34. Yang, H., Jiang, B.: Stability of fractional-order switched non-linear systems. IET Control Theory Appl. 10(8), 965–970 (2016)

    MathSciNet  Google Scholar 

  35. Liu, L., Xing, H., Di, Y. Fu, Z. Song, S.: Asynchronously input-output finite-time control of positive impulsive switched systems. Int. J. Control Autom. Syst. 1–7 (2020)

  36. Nieto, J.J., Stamov, G., Stamova, I.: A fractional-order impulsive delay model of price fluctuations in commodity markets: almost periodic solutions. Eur. Phys. J. Spec. Top. 226(16–18), 3811–3825 (2017)

    Google Scholar 

  37. Liu, N., Fang, J., Deng, W., Wu, Z., Ding, G.: Synchronization for a class of fractional-order linear complex networks via impulsive control. Int. J. Control Autom. Syst. 16(6), 2839–2844 (2018)

    Google Scholar 

  38. Khan, H., Khan, A., Jarad, F., Shah, A.: Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system. Chaos Solitons Fractals 131, 109477 (2020)

    MathSciNet  Google Scholar 

  39. Li, H., Li, H., Kao, Y.: New stability criterion of fractional-order impulsive coupled non-autonomous systems on networks. Neurocomputing. 401, 91–100 (2020)

    Google Scholar 

  40. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Ye, H., Gao, J., Ding, Y.: A generalized gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328(2), 1075–1081 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Amato, F., Ambrosino, R., Cosentino, C., De Tommasi, G.: Input-output finite time stabilization of linear systems. Automatica 46(9), 1558–1562 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Amato, F., Carannante, G., De Tommasi, G., Pironti, A.: Input-output finite-time stability of linear systems: necessary and sufficient conditions. IEEE Trans. Autom. Control 57(12), 3051–3063 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Lin, X., Li, X., Zou, Y., Li, S.: Finite-time stabilization of switched linear systems with nonlinear saturating actuators. J. Frankl. Inst. 351(3), 1464–1482 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Sakthivel, R., Joby, M., Wang, C., Kaviarasan, B.: Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults. Appl. Math. Comput. 332, 425–436 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2020JQ-402), by the Fundamental Research Funds for the Central Universities (Nos. GK201905001, GK201903004, 2019TS089) and also by the China Scholarship Council (No. 201806870032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YangQuan Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Guo, L., Wu, B. et al. Stability analysis of switched fractional-order continuous-time systems. Nonlinear Dyn 102, 2467–2478 (2020). https://doi.org/10.1007/s11071-020-06074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06074-8

Keywords

Navigation