Skip to main content

Advertisement

Log in

Curcumin Ameliorates Copper-Induced Neurotoxicity Through Inhibiting Oxidative Stress and Mitochondrial Apoptosis in SH-SY5Y Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Impaired homeostasis of copper has been linked to different pathophysiological mechanisms in neurodegenerative diseases and oxidative injury has been proposed as the main mechanism. This study aims to use curcumin, a widely used antioxidative and anti-apoptotic agent, to exert the neuroprotective effect against copper in vitro and illuminate the underlying mechanism. The effect of curcumin was examined by using a cell counting kit-8 assay, flow cytometry, immunofluorescence, spectrophotometer, and western blot. Results revealed that after pretreatment with curcumin for 3 h, copper-induced toxicity and apoptosis show a significant decline. Further experiments showed that curcumin not only decreased the production of ROS and MDA but also increased the activities of the ROS scavenging enzymes SOD and CAT. Moreover, curcumin treatment alleviated the decrease in mitochondrial membrane potential and the nuclear translocation of cytochrome c induced by copper. The protein levels of pro-caspase 3, pro-caspase 9, and PARP1 were up-regulated and the Bax/Bcl-2 ratio was down-regulated in the presence of curcumin. Taken together, our study demonstrates that curcumin has neuroprotective properties against copper in SH-SY5Y cells and the potential mechanisms might be related to oxidative stress and mitochondrial apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rihel J (2018) Copper on the brain. Nat Chem Biol 14(7):638–639

    Article  CAS  PubMed  Google Scholar 

  2. Hung YH, Bush AI, Cherny RA (2010) Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 15(1):61–76

    Article  CAS  PubMed  Google Scholar 

  3. Yu Y, Guerrero CR, Liu S, Amato NJ, Sharma Y, Gupta S, Wang Y (2016) Comprehensive assessment of oxidatively induced modifications of DNA in a rat model of human Wilson’s disease. Mol Cell Proteomics 15(3):810–817

    Article  CAS  PubMed  Google Scholar 

  4. Gitlin JD (2003) Wilson disease. Gastroenterology 125(6):1868–1877

    Article  PubMed  Google Scholar 

  5. Xiao G, Fan Q, Wang X, Zhou B (2013) Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding. Proc Natl Acad Sci U S A 110(37):14995–15000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lan AP, Chen J, Chai ZF, Hu Y (2016) The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. Biometals 29(4):665–678

    Article  CAS  PubMed  Google Scholar 

  7. Jiang D, Men L, Wang J, Zhang Y, Chickenyen S, Wang Y, Zhou F (2007) Redox reactions of copper complexes formed with different beta-amyloid peptides and their neuropathological [correction of neuropathalogical] relevance. Biochemistry 46(32):9270–9282

    Article  CAS  PubMed  Google Scholar 

  8. Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 595:105–125

    Article  PubMed  Google Scholar 

  9. Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int 2014:186864

  10. Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang M-T, Fisher C, Flynn E, HR B (1998) Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 4(6):376–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Anto RJ, George J, Babu KD, Rajasekharan K, Kuttan R (1996) Antimutagenic and anticarcinogenic activity of natural and synthetic curcuminoids. Mutat Res 370(2):127–131

    Article  CAS  PubMed  Google Scholar 

  12. Kocaadam B, Sanlier N (2017) Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 57(13):2889–2895

    Article  CAS  PubMed  Google Scholar 

  13. Bagheri H, Ghasemi F, Barreto GE, Rafiee R, Sathyapalan T, Sahebkar A (2020) Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors (Oxford, England) 46(1):5–20

    Article  CAS  Google Scholar 

  14. Abolaji AO, Fasae KD, Iwezor CE, Aschner M, Farombi EO (2020) Curcumin attenuates copper-induced oxidative stress and neurotoxicity in Drosophila melanogaster. Toxicol Rep 7:261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lan A-P, Xiong X-J, Chen J, Wang X, Chai Z-F, Hu Y (2016) AMPK inhibition enhances the neurotoxicity of cu(II) in SH-SY5Y cells. Neurotox Res 30(3):499–509

    Article  CAS  PubMed  Google Scholar 

  16. Horbay R, Bilyy R (2016) Mitochondrial dynamics during cell cycling. Apoptosis 21(12):1327–1335

    Article  CAS  PubMed  Google Scholar 

  17. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87(7):1157–1180

    Article  CAS  PubMed  Google Scholar 

  18. Calabrese EJ, Canada AT, Sacco C (1985) Trace elements and public health. Annu Rev Public Health 6(1):131–146

    Article  CAS  PubMed  Google Scholar 

  19. Szerdahelyi P, Kása P (1986) Histochemical demonstration of copper in normal rat brain and spinal cord. Evidence of localization in glial cells. Histochemistry 85(4):341–347

    Article  CAS  PubMed  Google Scholar 

  20. Lewińska-Preis L, Jabłońska M, Fabiańska MJ, Kita A (2011) Bioelements and mineral matter in human livers from the highly industrialized region of the Upper Silesia Coal Basin (Poland). Environ Geochem Health 33(6):595–611

    Article  PubMed  CAS  Google Scholar 

  21. Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y (2014) Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 114(8):4366–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scheiber IF, Mercer JFB, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Chen J, Tang Z, Li Y, Hu L, Pan J (2016) The effects of copper on brain microvascular endothelial cells and claudin via apoptosis and oxidative stress. Biol Trace Elem Res 174(1):132–141

    Article  CAS  PubMed  Google Scholar 

  24. Hu Z, Yu F, Gong P, Qiu Y, Zhou W, Cui Y, Li J, Chen H (2014) Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS. Toxicol Appl Pharmacol 276(2):95–103

    Article  CAS  PubMed  Google Scholar 

  25. Jiang W-D, Liu Y, Hu K, Jiang J, Li S-H, Feng L, Zhou X-Q (2014) Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain: protective effects of myo-inositol. Aquat Toxicol 155:301–313

    Article  CAS  PubMed  Google Scholar 

  26. Corona-Rivera A, Urbina-Cano P, Bobadilla-Morales L, Vargas-Lares Jde J, Ramirez-Herrera MA, Mendoza-Magaua ML, Troyo-Sanroman R, Diaz-Esquivel P, Corona-Rivera JR (2007) Protective in vivo effect of curcumin on copper genotoxicity evaluated by comet and micronucleus assays. J Appl Genet 48(4):389–396

    Article  PubMed  Google Scholar 

  27. Hashish EA, Elgaml SA (2016) Hepatoprotective and nephroprotective effect of curcumin against copper toxicity in rats. Indian J Clin Biochem 31(3):270–277

    Article  CAS  PubMed  Google Scholar 

  28. Abbaoui A, Chatoui H, El Hiba O, Gamrani H (2017) Neuroprotective effect of curcumin-I in copper-induced dopaminergic neurotoxicity in rats: a possible link with Parkinson’s disease. Neurosci Lett 660:103–108

    Article  CAS  PubMed  Google Scholar 

  29. Abbaoui A, Gamrani H (2018) Neuronal, astroglial and locomotor injuries in subchronic copper intoxicated rats are repaired by curcumin: a possible link with Parkinson’s disease. Acta Histochem 120(6):542–550

    Article  CAS  PubMed  Google Scholar 

  30. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106(6):1995–2044

    Article  CAS  PubMed  Google Scholar 

  31. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mancuso M, Coppede F, Migliore L, Siciliano G, Murri L (2006) Mitochondrial dysfunction, oxidative stress and neurodegeneration. J Alzheimers Dis 10(1):59–73

    Article  CAS  PubMed  Google Scholar 

  33. Tainer JA, Getzoff ED, Richardson JS, Richardson DC (1983) Structure and mechanism of copper, zinc superoxide dismutase. Nature 306(5940):284–287

    Article  CAS  PubMed  Google Scholar 

  34. Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB, Culotta VC, Price DL, Rothstein J, Gitlin JD (2000) Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A 97(6):2886–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hao F, Jing M, Zhao X, Liu R (2015) Spectroscopy, calorimetry and molecular simulation studies on the interaction of catalase with copper ion. J Photochem Photobiol B Biol 143:100–106

    Article  CAS  Google Scholar 

  36. Kowalczuk K, Stryjecka-Zimmer M (2002) The influence of oxidative stress on the level of malondialdehyde (MDA) in different areas of the rabbit brain. Ann Univ Mariae Curie Sklodowska Med 57(2):160–164

    PubMed  Google Scholar 

  37. Mogensen M, Sahlin K, Fernström M, Glintborg D, Vind BF, Beck-Nielsen H, Højlund K (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56(6):1592–1599

    Article  CAS  PubMed  Google Scholar 

  38. Ward MW, Rego AC, Frenguelli BG, Nicholls DG (2000) Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci 20(19):7208–7219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong HS, Dighe PA, Mezera V, Monternier PA, Brand MD (2017) Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J Biol Chem 292(41):16804–16809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang D, Zong C, Cheng K (2020) Chicken thalamic injury induced by copper (II) or/and arsenite exposure involves oxidative stress and inflammation-induced apoptosis. Ecotoxicol Environ Saf 197:110554

    Article  CAS  PubMed  Google Scholar 

  41. Liu H, Guo H, Jian Z, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2020) Copper induces oxidative stress and apoptosis in the mouse liver. Oxidative Med Cell Longev 2020:1359164

    Google Scholar 

  42. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci U S A 99(3):1259–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Düssmann H, Rehm M, Kögel D, Prehn JH (2003) Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent plasma membrane potential depolarization: a single-cell analysis. J Cell Sci 116(Pt 3):525–536

    Article  PubMed  CAS  Google Scholar 

  44. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu H, Zheng L, Yin L, Xu L, Qi Y, Han X, Xu Y, Liu K, Peng J (2014) Protective effects of the total saponins from Dioscorea nipponica Makino against carbon tetrachloride-induced liver injury in mice through suppression of apoptosis and inflammation. Int Immunopharmacol 19(2):233–244

    Article  CAS  PubMed  Google Scholar 

  46. Oliver FJ, de la Rubia G, Rolli V, Ruiz-Ruiz MC, de Murcia G, Murcia JM (1998) Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem 273(50):33533–33539

    Article  CAS  PubMed  Google Scholar 

  47. Peña-Blanco A, García-Sáez AJ (2018) Bax, Bak and beyond—mitochondrial performance in apoptosis. FEBS J 285(3):416–431

    Article  PubMed  CAS  Google Scholar 

  48. Nur-E-Kamal A, Gross SR, Pan Z, Balklava Z, Ma J, Liu LF (2004) Nuclear translocation of cytochrome c during apoptosis. J Biol Chem 279(24):24911–24914

    Article  CAS  PubMed  Google Scholar 

  49. Shin JW, Chun KS, Kim DH, Kim SJ, Kim SH, Cho NC, Na HK, Surh YJ (2020) Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification. Biochem Pharmacol 173:113820

    Article  CAS  PubMed  Google Scholar 

  50. Song MO, Mattie MD, Lee C-H, Freedman JH (2014) The role of Nrf1 and Nrf2 in the regulation of copper-responsive transcription. Exp Cell Res 322(1):39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported National Natural Science Foundation of China (31972740) and Major Science and Technology Innovation Project of Shandong Province (2019JZZY010735).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shusheng Tang.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, B., Li, D., Chen, Y. et al. Curcumin Ameliorates Copper-Induced Neurotoxicity Through Inhibiting Oxidative Stress and Mitochondrial Apoptosis in SH-SY5Y Cells. Neurochem Res 46, 367–378 (2021). https://doi.org/10.1007/s11064-020-03173-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03173-1

Keywords

Navigation