Skip to main content

Advertisement

Log in

Protective Effects of Curcumin Against Paclitaxel-Induced Spinal Cord and Sciatic Nerve Injuries in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Paclitaxel (PTX) is an antineoplastic agent commonly used in the treatment of solid tumors and is known to cause dose-limiting peripheral neurotoxicity. This study was performed to evaluate the protective effect of curcumin (CUR) against PTX-induced spinal cord and sciatic nerve injuries in rats. The rats were administered PTX (2 mg/kg, BW) intraperitoneally for the first 5 consecutive days followed by administration of CUR (100 and 200 mg/kg, BW daily in corn oil) orally for 10 days. Our results showed that CUR significantly reduced mRNA expression levels of NF-κB, TNF-α, IL-6, iNOS and GFAP whereas caused an increase in levels of Nrf2, HO-1 and NQO1 in the spinal cord and sciatic nerve of PTX-induced rats. In addition, CUR suppressed the activation of apoptotic and autophagic pathways by increasing Bcl-2 and Bcl-xL, and decreasing p53, caspase-3, Apaf-1, LC3A, LC3B and beclin-1 mRNA expression levels. The results showed that CUR also maintained the spinal cord and sciatic nerve histological architecture and integrity by both LFB staining and H&E staining. Immunohistochemical expressions of 8-OHdG, caspase-3 and LC3B in the PTX-induced spinal cord tissue were decreased after administration of CUR. Taken together, our findings demonstrated that CUR has protective effects on PTX-induced spinal cord and sciatic nerve injuries in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abbas W, Rao RR, Agarwal A, Saha R, Bajpai P, Qureshi S, Mittal A (2018) Incidence of neuropathy with weekly paclitaxel and role of oral glutamine supplementation for prevention of paclitaxel induced peripheral neuropathy randomized controlled trial. Indian J Med Paediatr Oncol 39:339

    Article  Google Scholar 

  2. Segat GC, Manjavachi MN, Matias DO, Passos GF, Freitas CS, Costa R, Calixto JB (2017) Antiallodynic effect of β-caryophyllene on paclitaxel-induced peripheral neuropathy in mice. Neuropharmacology 125:207–219

    Article  CAS  PubMed  Google Scholar 

  3. Hausheer FH, Schilsky RL, Bain S, Berghorn EJ, Lieberman F (2006) Diagnosis, management, and evaluation of chemotherapy-induced peripheral neuropathy. In: Semin Oncol. Elsevier, pp. 15–49

  4. Malekinejad H, Ahsan S, Delkhosh-Kasmaie F, Cheraghi H, Rezaei-Golmisheh A, Janbaz-Acyabar H (2016) Cardioprotective effect of royal jelly on paclitaxel-induced cardio-toxicity in rats. Iran J Basic Med Sci 19:221

    PubMed  PubMed Central  Google Scholar 

  5. Melli G, Jack C, Lambrinos GL, Ringkamp M, Höke A (2006) Erythropoietin protects sensory axons against paclitaxel-induced distal degeneration. Neurobiol Dis 24:525–530

    Article  CAS  PubMed  Google Scholar 

  6. George J, Banik NL, Ray SK (2010) Molecular mechanisms of taxol for induction of cell death in glioblastomas. In: Glioblastoma. Springer, pp. 283–298

  7. Yang M-Y, Wang C-J, Chen N-F, Ho W-H, Lu F-J, Tseng T-H (2014) Luteolin enhances paclitaxel-induced apoptosis in human breast cancer MDA-MB-231 cells by blocking STAT3. Chem Biol Interact 213:60–68

    Article  CAS  PubMed  Google Scholar 

  8. Zhao Y-X, Yao M-J, Liu Q, Xin J-J, Gao J-H, Yu X-C (2020) Electroacupuncture treatment attenuates paclitaxel-induced neuropathic pain in rats via inhibiting spinal glia and the TLR4/NF-κB pathway. J Pain Res 13:239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duggett NA, Griffiths LA, McKenna OE, De Santis V, Yongsanguanchai N, Mokori EB, Flatters SJ (2016) Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience 333:13–26

    Article  CAS  PubMed  Google Scholar 

  10. Sun Y, Kim JH, Vangipuram K, Hayes DF, Smith EM, Yeomans L, Henry NL, Stringer KA, Hertz DL (2018) Pharmacometabolomics reveals a role for histidine, phenylalanine, and threonine in the development of paclitaxel-induced peripheral neuropathy. Breast Cancer Res Treat 171:657–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benzer F, Kandemir FM, Ozkaraca M, Kucukler S, Caglayan C (2018) Curcumin ameliorates doxorubicin-induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats. J Biochem Mol Toxicol 32:e22030

    Article  CAS  Google Scholar 

  12. Dai C, Ciccotosto GD, Cappai R, Tang S, Li D, Xie S, Xiao X, Velkov T (2018) Curcumin attenuates colistin-induced neurotoxicity in N2a cells via anti-inflammatory activity, suppression of oxidative stress, and apoptosis. Mol Neurobiol 55:421–434

    Article  CAS  PubMed  Google Scholar 

  13. Sirohi VK, Popli P, Sankhwar P, Kaushal JB, Gupta K, Manohar M, Dwivedi A (2017) Curcumin exhibits anti-tumor effect and attenuates cellular migration via Slit-2 mediated down-regulation of SDF-1 and CXCR4 in endometrial adenocarcinoma cells. J Nutr Biochem 44:60–70

    Article  CAS  PubMed  Google Scholar 

  14. Lee Y-S, Cho D-C, Kim CH, Han I, Gil EY, Kim K-T (2019) Effect of curcumin on the inflammatory reaction and functional recovery after spinal cord injury in a hyperglycemic rat model. Spine J 19:2025–2039

    Article  PubMed  Google Scholar 

  15. Aksu EH, Kandemir FM, Yıldırım S, Küçükler S, Dörtbudak MB, Çağlayan C, Benzer F (2019) Palliative effect of curcumin on doxorubicin-induced testicular damage in male rats. J Biochem Mol Toxicol 33:e22384

    Article  CAS  PubMed  Google Scholar 

  16. Benzer F, Kandemir FM, Kucukler S, Comaklı S, Caglayan C (2018) Chemoprotective effects of curcumin on doxorubicin-induced nephrotoxicity in wistar rats: by modulating inflammatory cytokines, apoptosis, oxidative stress and oxidative DNA damage. Arch Physiol Biochem 124:448–457

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124

    Article  CAS  PubMed  Google Scholar 

  18. Ruzicka J, Urdzikova LM, Kloudova A, Amin AG, Vallova J, Kubinova S, Schmidt MH, Jhanwar-Uniyal M, Jendelova P (2018) Anti-inflammatory compound curcumin and mesenchymal stem cells in the treatment of spinal cord injury in rats. Acta Neurobiol Exp 78:358–374

    Google Scholar 

  19. Sang Q, Sun D, Chen Z, Zhao W (2018) NGF and PI3K/Akt signaling participate in the ventral motor neuronal protection of curcumin in sciatic nerve injury rat models. Biomed Pharmacother 103:1146–1153

    Article  CAS  PubMed  Google Scholar 

  20. Liu Z-Q, Xing S-S, Zhang W (2013) Neuroprotective effect of curcumin on spinal cord in rabbit model with ischemia/reperfusion. J Spinal Cord Med 36:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chakraborty M, Bhattacharjee A, Kamath JV (2017) Cardioprotective effect of curcumin and piperine combination against cyclophosphamide-induced cardiotoxicity. Indian J Pharmacol 49:65

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaur S, Muthuraman A (2019) Ameliorative effect of gallic acid in paclitaxel-induced neuropathic pain in mice. Toxicol Rep 6:505–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Özdemir S, Çomaklı S (2018) Investigation of the interaction between bta-miR-222 and the estrogen receptor alpha gene in the bovine ovarium. Reprod Biol 18:259–266

    Article  PubMed  Google Scholar 

  24. Arslan H, Altun S, Özdemir S (2017) Acute toxication of deltamethrin results in activation of iNOS, 8-OHdG and up-regulation of caspase 3, iNOS gene expression in common carp (Cyprinus carpio L.). Aquat Toxicol 187:90–99

    Article  CAS  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  26. Çomakli S, Özdemir S, Değirmençay Ş (2020) Canine distemper virus induces downregulation of GABA A, GABA B, and GAT1 expression in brain tissue of dogs. Arch Virol:1–11

  27. Zhou Y-Q, Liu D-Q, Chen S-P, Chen N, Sun J, Wang X-M, Cao F, Tian Y-K, Ye D-W (2020) Nrf2 activation ameliorates mechanical allodynia in paclitaxel-induced neuropathic pain. Acta Pharmacol Sin

  28. Jin SW, Hwang YP, Choi CY, Kim HG, Kim SJ, Kim Y, Chung YC, Lee KJ, Jeong TC, Jeong HG (2017) Protective effect of rutaecarpine against t-BHP-induced hepatotoxicity by upregulating antioxidant enzymes via the CaMKII-Akt and Nrf2/ARE pathways. Food Chem Toxicol 100:138–148

    Article  CAS  PubMed  Google Scholar 

  29. Çelik H, Kandemir FM, Caglayan C, Özdemir S, Çomaklı S, Kucukler S, Yardım A (2020) Neuroprotective effect of rutin against colistin-induced oxidative stress, inflammation and apoptosis in rat brain associated with the CREB/BDNF expressions. Mol Biol Rep 47:2023–2034

    Article  PubMed  CAS  Google Scholar 

  30. Zhang R, Xu M, Wang Y, Xie F, Zhang G, Qin X (2017) Nrf2—a promising therapeutic target for defensing against oxidative stress in stroke. Mol Neurobiol 54:6006–6017

    Article  CAS  PubMed  Google Scholar 

  31. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73:3221–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yuan Z, Jiang H, Zhu X, Liu X, Li J (2017) Ginsenoside Rg3 promotes cytotoxicity of paclitaxel through inhibiting NF-κB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer. Biomed Pharmacother 89:227–232

    Article  CAS  PubMed  Google Scholar 

  33. Temel Y, Kucukler S, Yıldırım S, Caglayan C, Kandemir FM (2020) Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn Schmiedeberg's Arch Pharmacol 393:325–337

    Article  CAS  Google Scholar 

  34. Kandemir FM, Yıldırım S, Kucukler S, Caglayan C, Darendelioğlu E, Dortbudak MB (2020) Protective effects of morin against acrylamide-induced hepatotoxicity and nephrotoxicity: a multi-biomarker approach. Food Chem Toxicol 138:111190

    Article  CAS  PubMed  Google Scholar 

  35. Turk E, Kandemir FM, Yildirim S, Caglayan C, Kucukler S, Kuzu M (2019) Protective effect of hesperidin on sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats. Biol Trace Elem Res 189:95–108

    Article  CAS  PubMed  Google Scholar 

  36. Kim SH, Park HJ, Moon DO (2017) Sulforaphane sensitizes human breast cancer cells to paclitaxel-induced apoptosis by downregulating the NF-κB signaling pathway. Oncol Lett 13:4427–4432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Caglayan C, Kandemir FM, Yıldırım S, Kucukler S, Kılınc MA, Saglam YS (2018) Zingerone ameliorates cisplatin-induced ovarian and uterine toxicity via suppression of sex hormone imbalances, oxidative stress, inflammation and apoptosis in female wistar rats. Biomed Pharmacother 102:517–530

    Article  PubMed  CAS  Google Scholar 

  38. Kuzu M, Yıldırım S, Kandemir FM, Küçükler S, Çağlayan C, Türk E, Dörtbudak MB (2019) Protective effect of morin on doxorubicin-induced hepatorenal toxicity in rats. Chem Biol Interact 308:89–100

    Article  CAS  PubMed  Google Scholar 

  39. Holbrook J, Lara-Reyna S, Jarosz-Griffiths H, McDermott MF (2019) Tumour necrosis factor signalling in health and disease. F1000Research 8

  40. Su H, Lei C-T, Zhang C (2017) Interleukin-6 signaling pathway and its role in kidney disease: an update. Front Immunol 8:405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Çelik H, Kucukler S, Çomaklı S, Özdemir S, Caglayan C, Yardım A, Kandemir FM (2020) Morin attenuates ifosfamide-induced neurotoxicity in rats via suppression of oxidative stress, neuroinflammation and neuronal apoptosis. Neurotoxicology 76:126–137

    Article  PubMed  CAS  Google Scholar 

  42. Brenner M (2014) Role of GFAP in CNS injuries. Neurosci Lett 565:7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahadi R, Khodagholi F, Daneshi A, Vafaei A, Mafi AA, Jorjani M (2015) Diagnostic value of serum levels of GFAP, pNF-H, and NSE compared with clinical findings in severity assessment of human traumatic spinal cord injury. Spine 40:E823–E830

    Article  PubMed  Google Scholar 

  44. Mansilla S, Bataller M, Portugal J (2006) Mitotic catastrophe as a consequence of chemotherapy. Anti-Cancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 6:589–602

    Article  CAS  Google Scholar 

  45. Moktan S, Ryppa C, Kratz F, Raucher D (2012) A thermally responsive biopolymer conjugated to an acid-sensitive derivative of paclitaxel stabilizes microtubules, arrests cell cycle, and induces apoptosis. Investig New Drugs 30:236–248

    Article  CAS  Google Scholar 

  46. Pan Z, Avila A, Gollahon L (2014) Paclitaxel induces apoptosis in breast cancer cells through different calcium—regulating mechanisms depending on external calcium conditions. Int J Mol Sci 15:2672–2694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Blajeski AL, Kottke TJ, Kaufmann SH (2001) A multistep model for paclitaxel-induced apoptosis in human breast cancer cell lines. Exp Cell Res 270:277–288

    Article  CAS  PubMed  Google Scholar 

  48. Bava SV, Puliappadamba VT, Deepti A, Nair A, Karunagaran D, Anto RJ (2005) Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-κB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 280:6301–6308

    Article  CAS  PubMed  Google Scholar 

  49. Dang Y-P, Yuan X-Y, Tian R, Li D-G, Liu W (2015) Curcumin improves the paclitaxel-induced apoptosis of HPV-positive human cervical cancer cells via the NF-κB-p53-caspase-3 pathway. Exp Ther Med 9:1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chun E, Lee K-Y (2004) Bcl-2 and Bcl-xL are important for the induction of paclitaxel resistance in human hepatocellular carcinoma cells. BBRC 315:771–779

    CAS  PubMed  Google Scholar 

  51. Morales-Cano D, Calviño E, Rubio V, Herráez A, Sancho P, Tejedor MC, Diez JC (2013) Apoptosis induced by paclitaxel via Bcl-2, Bax and caspases 3 and 9 activation in NB4 human leukaemia cells is not modulated by ERK inhibition. Exp Toxicol Pathol 65:1101–1108

    Article  CAS  PubMed  Google Scholar 

  52. Nakajima H, K-i U, Ito T, Kitaoka H, Kimura F, Hanafusa T (2012) The relation of urinary 8-OHdG, a marker of oxidative stress to DNA, and clinical outcomes for ischemic stroke. Open Neurol J 6:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kandemir FM, Ozkaraca M, Küçükler S, Caglayan C, Hanedan B (2018) Preventive effects of hesperidin on diabetic nephropathy induced by streptozotocin via modulating TGF-β1 and oxidative DNA damage. Toxin Rev 37:287–293

    Article  CAS  Google Scholar 

  54. Kandemir FM, Yildirim S, Kucukler S, Caglayan C, Mahamadu A, Dortbudak MB (2018) Therapeutic efficacy of zingerone against vancomycin-induced oxidative stress, inflammation, apoptosis and aquaporin 1 permeability in rat kidney. Biomed Pharmacother 105:981–991

    Article  CAS  PubMed  Google Scholar 

  55. Caglayan C, Temel Y, Kandemir FM, Yildirim S, Kucukler S (2018) Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage. Environ Sci Pollut Res 25:20968–20984

    Article  CAS  Google Scholar 

  56. Zhang S-F, Wang X-Y, Fu Z-Q, Peng Q-H, Zhang J-Y, Ye F, Fu Y-F, Zhou C-Y, Lu W-G, Cheng X-D (2015) TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer. Autophagy 11:225–238

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu F, Liu D, Yang Y, Zhao S (2013) Effect of autophagy inhibition on chemotherapy-induced apoptosis in A549 lung cancer cells. Oncol Lett 5:1261–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xi G, Hu X, Wu B, Jiang H, Young CY, Pang Y, Yuan H (2011) Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer Lett 307:141–148

    Article  CAS  PubMed  Google Scholar 

  59. Koukourakis MI, Kalamida D, Giatromanolaki A, Zois CE, Sivridis E, Pouliliou S, Mitrakas A, Gatter KC, Harris AL (2015) Autophagosome proteins LC3A, LC3B and LC3C have distinct subcellular distribution kinetics and expression in cancer cell lines. PLoS One 10

  60. Kandemir FM, Kucukler S, Eldutar E, Caglayan C, Gülçin I (2017) Chrysin protects rat kidney from paracetamol-induced oxidative stress, inflammation, apoptosis, and autophagy: a multi-biomarker approach. Sci Pharm 85:4

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatih Mehmet Kandemir or Cuneyt Caglayan.

Ethics declarations

Conflict of interest

None to be declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yardım, A., Kandemir, F.M., Çomaklı, S. et al. Protective Effects of Curcumin Against Paclitaxel-Induced Spinal Cord and Sciatic Nerve Injuries in Rats. Neurochem Res 46, 379–395 (2021). https://doi.org/10.1007/s11064-020-03174-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03174-0

Keywords

Navigation