Skip to main content
Log in

A procedure to optimize the geometric and dynamic designs of assistive upper limb exoskeletons

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The need for upper limb assistive and wearable exoskeletons is growing in various fields, e.g. either to support patients with neuromuscular disabilities or to reduce the effort strains on workers. These exoskeletons should reduce the efforts required by the user during functional tasks (dynamic consideration) and should fit the user’s size (geometric consideration). This is a tedious task, due to the 3D human-exoskeleton interactions, and to the complex and interdependent selection of the power transmission characteristics, i.e. motors or passive elements. There are still few guidelines and few clear procedures to support geometric and dynamic syntheses of these exoskeletons.

The objective of this study is to develop a procedure for geometric and dynamic syntheses of assistive upper limb exoskeletons, to serve as a tool to optimize their design.

Firstly, a geometric optimization of the exoskeleton dimensions enabled to satisfy the kinematic loop closures between the exoskeleton and the user for a maximum of positions while carrying out specific functional tasks and avoiding collisions with the body segments. Secondly, through an optimal control problem, the dynamic characteristics of the exoskeleton were obtained by minimizing the user’s joint torques for the functional tasks.

Closing the kinematic loops of the exoskeletons with optimized dimensions was achieved for all positions of the user while carrying out the functional tasks, which was 10.8% more than with a visual identification of the dimensions. The resulting dynamic parameters could reduce the user’s joint torque to less than 10.6% of the human-only simulations for nearly all joints and tasks.

These results showed that the geometric and dynamic synthesis procedures were successful. This is important, as it can enable the development of dedicated exoskeletons, such as lighter and smaller exoskeletons. The future perspectives will be to build an optimization framework, where the geometric and dynamic parameters could be optimized together, and to minimize the user’s muscle forces instead of joint torques for specific design purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gopura, R.A.R.C., Bandara, D.S.V., Kiguchi, K., Mann, G.K.I.: Developments in hardware systems of active upper-limb exoskeleton robots: a review. Robot. Auton. Syst. 75, 203–220 (Jan. 2016). https://doi.org/10.1016/j.robot.2015.10.001

    Article  Google Scholar 

  2. Koo, D., Chang, P.H., Sohn, M.K., Shin, J.: Shoulder mechanism design of an exoskeleton robot for stroke patient rehabilitation. In: 2011 IEEE International Conference on Rehabilitation Robotics, pp. 1–6 (2011). https://doi.org/10.1109/ICORR.2011.5975505

    Chapter  Google Scholar 

  3. Frisoli, A., Rocchi, F., Marcheschi, S., Dettori, A., Salsedo, F., Bergamasco, M.: A new force-feedback arm exoskeleton for haptic interaction in virtual environments. In: First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference, pp. 195–201 (2005). https://doi.org/10.1109/WHC.2005.15

    Chapter  Google Scholar 

  4. Bartolo, M., et al.: Arm weight support training improves functional motor outcome and movement smoothness after stroke. Funct. Neurol. 29(1), 15–21 (Jul. 2014)

    Google Scholar 

  5. Marcheschi, S., Salsedo, F., Fontana, M., Bergamasco, M.: Body extender: whole body exoskeleton for human power augmentation. In: 2011 IEEE International Conference on Robotics and Automation, pp. 611–616 (2011). https://doi.org/10.1109/ICRA.2011.5980132

    Chapter  Google Scholar 

  6. Bougrinat, Y., Achiche, S., Raison, M.: Design and development of a lightweight ankle exoskeleton for human walking augmentation. Mechatronics 64, 102297 (Dec. 2019). https://doi.org/10.1016/j.mechatronics.2019.102297

    Article  Google Scholar 

  7. Zoss, A., Kazerooni, H.: Design of an electrically actuated lower extremity exoskeleton. Adv. Robot. 20(9), 967–988 (2006). https://doi.org/10.1163/156855306778394030

    Article  Google Scholar 

  8. Huysamen, K., Bosch, T., de Looze, M., Stadler, K.S., Graf, E., O’Sullivan, L.W.: Evaluation of a passive exoskeleton for static upper limb activities. Appl. Ergon. 70, 148–155 (2018). https://doi.org/10.1016/j.apergo.2018.02.009

    Article  Google Scholar 

  9. Gunn, M., Shank, T.M., Eppes, M., Hossain, J., Rahman, T.: User evaluation of a dynamic arm orthosis for people with neuromuscular disorders. IEEE Trans. Neural Syst. Rehabil. Eng. 24(12), 1277–1283 (2016). https://doi.org/10.1109/TNSRE.2015.2492860

    Article  Google Scholar 

  10. Font-Llagunes, J.M., Lugrís, U., Clos, D., Alonso, F.J., Cuadrado, J.: Design, control, and pilot study of a lightweight and modular robotic exoskeleton for walking assistance after spinal cord injury. J. Mech. Robot. 12(3), 1–8 (Jun. 2020). https://doi.org/10.1115/1.4045510

    Article  Google Scholar 

  11. Young, A.J., Ferris, D.P.: State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 25(2), 171–182 (2017). https://doi.org/10.1109/TNSRE.2016.2521160

    Article  Google Scholar 

  12. Yan, T., Cempini, M., Oddo, C.M., Vitiello, N.: Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot. Auton. Syst. 64, 120–136 (Feb. 2015). https://doi.org/10.1016/j.robot.2014.09.032

    Article  Google Scholar 

  13. Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S.: A survey on robotic devices for upper limb rehabilitation. J. NeuroEng. Rehabil. 11(1), 3 (Jan. 2014). https://doi.org/10.1186/1743-0003-11-3

    Article  Google Scholar 

  14. Haumont, T., et al..: Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease. J. Pediatr. Orthop. 31(5) e44 (Aug. 2011). https://doi.org/10.1097/BPO.0b013e31821f50b5

    Article  Google Scholar 

  15. Altenburger, R., Scherly, D., Stadler, K.S.: Design of a passive, iso-elastic upper limb exoskeleton for gravity compensation. Robomech J. 3(1), 12 (Apr. 2016). https://doi.org/10.1186/s40648-016-0051-5

    Article  Google Scholar 

  16. Shank, T., Eppes, M., Hossain, J., Gunn, M., Rahman, T.: Outcome measures with COPM of children using a Wilmington robotic exoskeleton. Open J. Occupat. Therapy 5(1), 54037739 (Jan. 2017). https://doi.org/10.15453/2168-6408.1262

    Article  Google Scholar 

  17. Elliott, G., Sawicki, G.S., Marecki, A., Herr, H.: The biomechanics and energetics of human running using an elastic knee exoskeleton. In: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), pp. 1–6 (2013). https://doi.org/10.1109/ICORR.2013.6650418

    Chapter  Google Scholar 

  18. Perez Luque, E.: Evaluation of the Use of Exoskeletons in the Range of Motion of Workers. Dissertation, University of Skövde, School of Engineering Science (2019) http://his.diva-portal.org/smash/get/diva2:1329519/FULLTEXT01.pdf. [Online]. Available

  19. Matthew, R.P., Mica, E.J., Meinhold, W., Loeza, J.A., Tomizuka, M., Bajcsy, R.: Introduction and initial exploration of an active/passive exoskeleton framework for portable assistance. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5351–5356 (2015). https://doi.org/10.1109/IROS.2015.7354133

    Chapter  Google Scholar 

  20. Smith, R.L., Lobo-Prat, J., van der Kooij, H., Stienen, A.H.A.: Design of a perfect balance system for active upper-extremity exoskeletons. In: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), pp. 1–6 (2013). https://doi.org/10.1109/ICORR.2013.6650376

    Chapter  Google Scholar 

  21. Galinski, D., Sapin, J., Dehez, B.: Optimal design of an alignment-free two-DOF rehabilitation robot for the shoulder complex. In: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), pp. 1–7 (2013). https://doi.org/10.1109/ICORR.2013.6650502

    Chapter  Google Scholar 

  22. Sarac, M., Solazzi, M., Sotgiu, E., Bergamasco, M., Frisoli, A.: Design and kinematic optimization of a novel underactuated robotic hand exoskeleton. Meccanica 52(3), 749–761 (Feb. 2017). https://doi.org/10.1007/s11012-016-0530-z

    Article  MathSciNet  Google Scholar 

  23. Hayashi, Y., Dubey, R., Kiguchi, K.: Torque optimization for a 7DOF upper-limb power-assist exoskeleton robot. In: 2011 IEEE Workshop on Robotic Intelligence in Informationally Structured Space, pp. 49–54 (2011). https://doi.org/10.1109/RIISS.2011.5945786

    Chapter  Google Scholar 

  24. Aoustin, Y., Formalskii, A.M.: Walking of biped with passive exoskeleton: evaluation of energy consumption. Multibody Syst. Dyn. 43(1), 71–96 (May 2018). https://doi.org/10.1007/s11044-017-9602-7

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou, L., Li, Y., Bai, S.: A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation. Robot. Auton. Syst. 91, 337–347 (May 2017). https://doi.org/10.1016/j.robot.2016.12.012

    Article  Google Scholar 

  26. Manns, P., Sreenivasa, M., Millard, M., Mombaur, K.: Motion optimization and parameter identification for a human and lower back exoskeleton model. IEEE Robot. Autom. Lett. 2(3), 1564–1570 (Jul. 2017). https://doi.org/10.1109/LRA.2017.2676355

    Article  Google Scholar 

  27. Laitenberger, M., Raison, M., Périé, D., Begon, M.: Refinement of the upper limb joint kinematics and dynamics using a subject-specific closed-loop forearm model. Multibody Syst. Dyn. 33(4), 413–438 (Apr. 2015). https://doi.org/10.1007/s11044-014-9421-z

    Article  MathSciNet  Google Scholar 

  28. Ehrig, R.M., Taylor, W.R., Duda, G.N., Heller, M.O.: A survey of formal methods for determining the centre of rotation of ball joints. J. Biomech. 39(15), 2798–2809 (Jan. 2006). https://doi.org/10.1016/j.jbiomech.2005.10.002

    Article  Google Scholar 

  29. Ehrig, R.M., Taylor, W.R., Duda, G.N., Heller, M.O.: A survey of formal methods for determining functional joint axes. J. Biomech. 40(10), 2150–2157 (Jan. 2007). https://doi.org/10.1016/j.jbiomech.2006.10.026

    Article  Google Scholar 

  30. Automatic Joint Parameter Estimation from Magnetic Motion Capture Data. [Online]. Available: http://graphics.berkeley.edu/papers/Obrien-AJP-2000-05. [Accessed: 14-Jan-2020]

  31. Yeadon, M.R.: The simulation of aerial movement—II. A mathematical inertia model of the human body. J. Biomech. 23(1), 67–74 (Jan. 1990). https://doi.org/10.1016/0021-9290(90)90370-I

    Article  Google Scholar 

  32. Lecours, S.: Développement d’un exosquelette portable motorisé des membres supérieurs pour les enfants atteints de troubles neuromusculaires, masters. Polytechnique, Montréal (2019)

    Google Scholar 

  33. Samin, J.-C., Fisette, P.: Symbolic Modeling of Multibody Systems. Springer, Netherlands (2003)

    Book  Google Scholar 

  34. Docquier, N., Poncelet, A., Fisette, P.: ROBOTRAN: a powerful symbolic gnerator of multibody models. Mech. Sci. 4(1), 199–219 (May 2013). https://doi.org/10.5194/ms-4-199-2013.

    Article  Google Scholar 

  35. Rosen, J., Perry, J.C., Manning, N., Burns, S., Hannaford, B.: The human arm kinematics and dynamics during daily activities - toward a 7 DOF upper limb powered exoskeleton. In: ICAR’05. Proceedings., 12th International Conference on Advanced Robotics, 2005, pp. 532–539 (2005). https://doi.org/10.1109/ICAR.2005.1507460

    Chapter  Google Scholar 

  36. Raison, M.: On the Quantification of Joint and Muscle Efforts in the Human Body During Motion. UCL - Université Catholique de Louvain, Louvain-la-Neuve, Belgium (2009).

    Google Scholar 

  37. Collard, J.-F.: Geometrical and Kinematic Optimization of Closed-Loop Multibody Systems/Optimisation géométrique et cinématique de systèmes multicorps avec boucles cinématiques UCL - Université Catholique de Louvain, Louvain-la-Neuve, Belgium (2007).

    Google Scholar 

  38. Galinski, D.: Conception et optimisation d’un robot de rééducation neuromotrice du membre supérieur avec compensation active de la gravité. UCL - Université Catholique de Louvain, Louvain-la-Neuve, Belgium (2014).

    Google Scholar 

  39. Bell, M.L., Sargent, R.W.H.: Optimal control of inequality constrained DAE systems. Comput. Chem. Eng. 24(11), 2385–2404 (Nov. 2000). https://doi.org/10.1016/S0098-1354(00)00566-4

    Article  Google Scholar 

  40. Fabien, B.C.: Numerical solution of constrained optimal control problems with parameters. Appl. Math. Comput. 80(1), 43–62 (Nov. 1996). https://doi.org/10.1016/0096-3003(95)00280-4

    Article  MathSciNet  MATH  Google Scholar 

  41. von Stryk, O.: Numerical solution of optimal control problems by direct collocation. In: Bulirsch, R., Miele, A., Stoer, J., Well, K. (eds.) Optimal Control: Calculus of Variations, Optimal Control Theory and Numerical Methods, pp. 129–143. Birkhäuser, Basel (1993)

    Chapter  Google Scholar 

  42. Andersson, J.A.E., Rawlings, J.B.: Sensitivity analysis for nonlinear programming in CasADi** the authors would like to thank Johnson Controls International Inc, for generous support that has made this work possible. IFAC-PapersOnLine 51(20), 331–336 (Jan. 2018). https://doi.org/10.1016/j.ifacol.2018.11.055

    Article  Google Scholar 

  43. Diehl, M., Gros, S.: Numerical Optimal Control (preliminary and incomplete draft), p. 357

  44. Gros, S.: Numerical Optimal Control with DAEs Lecture 12: Optimal Control with DAEs. [Online]. Available. https://www.syscop.de/files/2015ws/noc-dae/lecture%20slides/12-DAEOptimalControl.pdf

  45. Petuskey, K., Bagley, A., Abdala, E., James, M.A., Rab, G.: Upper extremity kinematics during functional activities: three-dimensional studies in a normal pediatric population. Gait Posture 25(4), 573–579 (Apr. 2007). https://doi.org/10.1016/j.gaitpost.2006.06.006

    Article  Google Scholar 

  46. Näf, M.B., Junius, K., Rossini, M., Rodriguez-Guerrero, C., Vanderborght, B., Lefeber, D.: Misalignment compensation for full human-exoskeleton kinematic compatibility: state of the art and evaluation. Appl. Mech. Rev. 70(5) 050802 (Sep. 2018). https://doi.org/10.1115/1.4042523

    Article  Google Scholar 

  47. Thomas, C.K., Zaidner, E.Y., Calancie, B., Broton, J.G., Bigland-Ritchie, B.R.: Muscle weakness, paralysis, and atrophy after human cervical spinal cord injury. Exp. Neurol. 148(2), 414–423 (Dec. 1997). https://doi.org/10.1006/exnr.1997.6690

    Article  Google Scholar 

  48. Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14(11), 793–801 (Jan. 1981). https://doi.org/10.1016/0021-9290(81)90035-X

    Article  Google Scholar 

  49. Wen, J., Raison, M., Achiche, S.: Using a cost function based on kinematics and electromyographic data to quantify muscle forces. J. Biomech. 80, 151–158 (Oct. 2018). https://doi.org/10.1016/j.jbiomech.2018.09.002

    Article  Google Scholar 

  50. Mahmud, J., Holt, C.A., Evans, S.L.: An innovative application of a small-scale motion analysis technique to quantify human skin deformation in vivo. J. Biomech. 43(5), 1002–1006 (Mar. 2010). https://doi.org/10.1016/j.jbiomech.2009.11.009

    Article  Google Scholar 

  51. Raison, M., Detrembleur, C., Fisette, P., Samin, J.-C.: Assessment of antagonistic muscle forces during forearm flexion/extension. In: Arczewski, K., Blajer, W., Fraczek, J., Wojtyra, M. (eds.) Multibody Dynamics: Computational Methods and Applications, Dordrecht: Springer Netherlands, pp. 215–238 (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Blanchet.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Motor parameters

Table 3 Motor parameters

Appendix B: Optimal control problem evaluation

The following results were obtained with the Eat with spoon functional task to illustrate the process for one movement. The first step was to validate the kinematics and dynamics obtained with a human-only OCP following the method proposed in Sects. 2.5.1 to 2.5.3. These results are presented in Fig. 13: Figs. 13A-D show that the kinematics of the movement was respected, while Figs. 13E-F show a reduction of the RMS human joint torque by 3% for the elbow joint and 5% for the shoulder joint.

Fig. 13
figure 13

Experimental data and human-only (HO) optimal control problem (OCP), A and B, position, C and D, velocities, E and F, joint torques and RMS torques

Figure 13 enables the validation of the kinematics and dynamics obtained with the OCP. In Figs. 13A-D the kinematics were respected thus keeping a valid human trajectory. This is important, especially for a task such as eating, where the orientation of the hand is crucial. The small differences in kinematics are reflected in the dynamics by Figs. 13E-F, where there is a slight reduction of the human joint torque with the OCP suggesting the solver changed the trajectory to minimize the joint torques. This fits the cost function described by Eq. (17).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanchet, L., Achiche, S., Docquier, Q. et al. A procedure to optimize the geometric and dynamic designs of assistive upper limb exoskeletons. Multibody Syst Dyn 51, 221–245 (2021). https://doi.org/10.1007/s11044-020-09766-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09766-6

Keywords

Navigation