Skip to main content
Log in

Dynamic modeling, analysis, and comparative study of a quadruped with bio-inspired robotic tails

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Looking to nature, animals frequently utilize tails to work alongside or in place of their legs to maneuver, stabilize, and/or propel to achieve highly agile motions. Although the single-link robotic tail shows its dynamical superiority and practical effectiveness in mobile platform maneuvering, most tails observed in nature have multi-link structures. Therefore, to investigate this novel tail structure, bio-inspired and biomimetic multi-link robotic tails were proposed and implemented. However, due to the lack of a whole-body dynamic model, previous research focused on investigating the tail subsystem independently without considering the mobile platform’s motions, which introduces deficiencies on both analysis and control. To bridge this theoretical gap, this paper presents a unified dynamics model that incorporates both the quadruped and the tail subsystems as a complete coupled dynamic system. Classical multibody dynamics formulation based on the principle of virtual work is utilized to derive the dynamic model. Based on the new whole-body dynamic model, three typical tail structures, including a single-link pendulum tail, a multi-link rigid tail, and a multi-link flexible tail are evaluated. The results indicate that by using a center of mass-based benchmark, the multi-link tail structure is dynamically equivalent to the single-link tail structure for bending motion. However, for rolling motions, the multi-link structure illustrates noticeable dynamical benefits compared to a single-link structure due to its higher inertia. In addition, a multi-link flexible structure shows significant oscillations and uncontrollable dynamic behaviors due to its under-actuation feature, which may limit its usage for highly dynamic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Briggs, R., Lee, J., Haberland, M., Kim, S.: Tails in biomimetic design: analysis, simulation, and experiment. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal (2012)

    Google Scholar 

  2. Casarez, C.S., Fearing, R.S.: Steering of an underactuated legged robot through terrain contact with an active tail. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Spain (2018)

    Google Scholar 

  3. Chang-Siu, E., Libby, T., Tomizuka, M., Full, R.J.: A lizard-inspired active tail enables rapid maneuvers and dynamic stabilization in a terrestrial robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA (2011)

    Google Scholar 

  4. Codourey, A.: Dynamic modeling of parallel robots for computed-torque control implementation. Int. J. Robot. Res. 17(12), 1325–1336 (1998)

    Article  Google Scholar 

  5. Dawson, R.S., Warburton, N.M., Richards, H.L., Milne, N.: Walking on five legs: investigating tail use during slow gait in kangaroos and wallabies. Aust. J. Zool. 63(3), 192–200 (2015)

    Article  Google Scholar 

  6. De, A., Koditschek, D.E.: Parallel composition of templates for tail-energized planar hopping. In: Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, USA (2015)

    Google Scholar 

  7. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Berlin (2014)

    MATH  Google Scholar 

  8. Freymiller, G.A., Whitford, M.D., Higham, T.E., Clark, R.W.: Escape dynamics of free-ranging desert kangaroo rats (Rodentia: heteromyidae) evading rattlesnake strikes. Biol. J. Linn. Soc. 127(1), 164–172 (2019)

    Article  Google Scholar 

  9. Heim, S.W., Ajallooeian, M., Eckert, P., Vespignani, M., Ijspeert, A.J.: On designing an active tail for legged robots: simplifying control via decoupling of control objectives. Ind. Robot 43(3), 338–346 (2016)

    Article  Google Scholar 

  10. Hickman, G.C.: The mammalian tail: a review of functions. Mamm. Rev. 9(4), 143–157 (1979)

    Article  MathSciNet  Google Scholar 

  11. Jusufi, A., Kawano, D.T., Libby, T., Full, R.J.: Righting and turning in mid-air using appendage inertia: reptile tails, analytical models and bio-inspired robots. Bioinspir. Biomim. 5(4), 045001 (2010)

    Article  Google Scholar 

  12. Libby, T., Moore, T.Y., Chang-Siu, E., Li, D., Cohen, D.J., Jusufi, A., Full, R.J.: Tail-assisted pitch control in lizards, robots and dinosaurs. Nature 481(7380), 181–184 (2012)

    Article  Google Scholar 

  13. Libby, T., Johnson, A.M., Chang-Siu, E., Full, R.J., Koditschek, D.E.: Comparative design, scaling, and control of appendages for inertial reorientation. IEEE Trans. Robot. 32(6), 1380–1398 (2016)

    Article  Google Scholar 

  14. Liu, Y., Ben-Tzvi, P.: Dynamic modeling of a quadruped with a robotic tail using virtual work principle. In: Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Quebec City, Canada (2018)

    Google Scholar 

  15. Liu, Y., Ben-Tzvi, P.: Design, analysis, and integration of a new two-degree-of-freedom articulated multi-link robotic tail mechanism. J. Mech. Robot. 12(2), 021101 (2020)

    Article  Google Scholar 

  16. Liu, G.H., Lin, H.Y., Lin, H.Y., Chen, S.T., Lin, P.C.: A bio-inspired hopping kangaroo robot with an active tail. J. Bionics Eng. 11(4), 541–555 (2014)

    Article  Google Scholar 

  17. Liu, Y., Wang, J., Ben-Tzvi, P.: A cable length invariant robotic tail using a circular shape universal joint mechanism. J. Mech. Robot. 11(5), 051005 (2019)

    Article  Google Scholar 

  18. Machairas, K., Papadopoulos, E.: On quadruped attitude dynamics and control using reaction wheels and tails. In: Proceedings of the European Control Conference, Linz, Austria (2015)

    Google Scholar 

  19. Mistry, M., Buchli, J., Schaal, S.: Inverse dynamics control of floating base systems using orthogonal decomposition. In: Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage AK, USA (2010)

    Google Scholar 

  20. Nabeshima, J., Saraiji, M.Y., Minamizawa, K.: Arque: artificial biomimicry-inspired tail for extending innate body functions. In: ACM SIGGRAPH 2019 Posters, Los Angeles, CA, USA (2019)

    Google Scholar 

  21. O’Connor, S.M., Dawson, T.J., Kram, R., Donelan, J.M.: The kangaroo’s tail propels and powers pentapedal locomotion. Biol. Lett. 10(7), 20140381 (2014)

    Article  Google Scholar 

  22. Ouezdou, F.B., Bruneau, O., Guinot, J.C.: Dynamic analysis tool for legged robots. Multibody Syst. Dyn. 2(4), 369–391 (1998)

    Article  MathSciNet  Google Scholar 

  23. Patel, A., Boje, E.: On the conical motion of a two-degree-of-freedom tail inspired by the cheetah. IEEE Trans. Robot. 31(6), 1555–1560 (2015)

    Article  Google Scholar 

  24. Rone, W., Ben-Tzvi, P.: Dynamic modeling and simulation of a yaw-angle quadruped maneuvering with a planar robotic tail. J. Dyn. Syst. Meas. Control 138(8), 084502 (2016)

    Article  Google Scholar 

  25. Rone, W.S., Liu, Y., Ben-Tzvi, P.: Maneuvering and stabilization control of a bipedal robot with a universal-spatial robotic tail. Bioinspir. Biomim. 14(1), 016014 (2018)

    Article  Google Scholar 

  26. Rone, W.S., Saab, W., Ben-Tzvi, P.: Design, modeling, and integration of a flexible universal spatial robotic tail. J. Mech. Robot. 10(4), 041001 (2018)

    Article  Google Scholar 

  27. Saab, W., Rone, W.S., Ben-Tzvi, P.: Robotic tails: a state-of-the-art review. Robotica 36(9), 1263–1277 (2018)

    Article  Google Scholar 

  28. Saab, W., Rone, W.S., Ben-Tzvi, P.: Discrete modular serpentine robotic tail: design, analysis and experimentation. Robotica 36(7), 994–1018 (2018)

    Article  Google Scholar 

  29. Saab, W., Rone, W., Kumar, A., Ben-Tzvi, P.: Design and integration of a novel spatial articulated robotic tail. IEEE/ASME Trans. Mechatron. 24(2), 434–446 (2019)

    Article  Google Scholar 

  30. Santiago, J.L.C., Godage, I.S., Gonthina, P., Walker, I.D.: Soft robots and kangaroo tails: modulating compliance in continuum structures through mechanical layer jamming. Soft Robot. 3(2), 54–63 (2016)

    Article  Google Scholar 

  31. Shah, S.V., Saha, S.K., Dutt, J.K.: Modular framework for dynamic modeling and analyses of legged robots. Mech. Mach. Theory 49, 234–255 (2012)

    Article  Google Scholar 

  32. Simon, B., Sato, R., Choley, J.Y., Ming, A.: Development of a bio-inspired flexible tail systemxs. In: Proceedings of the 12th France-Japan and 10th Europe-Asia Congress on Mechatronics, Tsu, Japan (2018)

    Google Scholar 

  33. Tsai, L.W.: Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work. J. Mech. Des. 122(1), 3–9 (2000)

    Article  Google Scholar 

  34. Wang, J., Gosselin, C.M.: A new approach for the dynamic analysis of parallel manipulators. Multibody Syst. Dyn. 2(3), 317–334 (1998)

    Article  MathSciNet  Google Scholar 

  35. Young, J.W., Russo, G.A., Fellmann, C.D., Thatikunta, M.A., Chadwell, B.A.: Tail function during arboreal quadrupedalism in squirrel monkeys (Saimiri boliviensis) and tamarins (Saguinus oedipus). J. Exp. Zool. Part A: Ecol. Genet. Physiol. 323(8), 556–566 (2015)

    Google Scholar 

  36. Zeglin, G.J.: Uniroo – a one legged dynamic hopping robot. Bachelor thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1991)

  37. Zhao, J., Zhao, T., Xi, N., Mutka, M.W., Xiao, L.: Msu tailbot: controlling aerial maneuver of a miniature-tailed jumping robot. IEEE/ASME Trans. Mechatron. 20(6), 2903–2914 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinhas Ben-Tzvi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ben-Tzvi, P. Dynamic modeling, analysis, and comparative study of a quadruped with bio-inspired robotic tails. Multibody Syst Dyn 51, 195–219 (2021). https://doi.org/10.1007/s11044-020-09764-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09764-8

Keywords

Navigation