Skip to main content
Log in

Synthesis and evaluation of ursolic acid-based 1,2,4-triazolo[1,5-a]pyrimidines derivatives as anti-inflammatory agents

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Here, two series of novel ursolic acid-based 1,2,4-triazolo[1,5-a]pyrimidines derivatives were synthesized and screened for their anti-inflammatory activity by evaluating their inhibition effect of using LPS-induced inflammatory response in RAW 264.7 macrophages in vitro; the effects of different concentrations of the compounds on the secretion of nitric oxide (NO) and inflammatory cytokines including TNF-α and IL-6 were evaluated. Their toxicity was also assessed in vitro. Results showed that the most prominent compound 3 could significantly decrease production of the above inflammatory factors. Docking study was performed for the representative compounds 3, UA, and Celecoxib to explain their interaction with cyclooxygenase-2 (COX-2) receptor active site. In vitro enzyme study implied that compound 3 exerted its anti-inflammatory activity through COX-2 inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Afonina IS, Zhong ZY, Karin M, Beyaert R (2017) Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol 18:861–869. https://doi.org/10.1038/ni.3772

    Article  CAS  PubMed  Google Scholar 

  2. Manthiram K, Zhou Q, Aksentijevich I, Kastner DL (2017) The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat Immunol 18:832–842. https://doi.org/10.1038/ni.3777

    Article  CAS  PubMed  Google Scholar 

  3. Sherwood ER, Toliver-Kinsky T (2004) Mechanisms of the inflammatory response. Best Pract Res Clin Anaesthesiol 18:385–405. https://doi.org/10.1016/j.bpa.2003.12.002

    Article  CAS  PubMed  Google Scholar 

  4. Lang Y, Chu FN, Shen DH, Zhang WGL, Zheng C, Zhu J, Cui L (2018) Role of inflammasomes in neuroimmune and neurodegenerative diseases: a systematic review. Mediators Inflamm 2018:1549549. https://doi.org/10.1155/2018/1549549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Siti HN, Kamisah Y, Kamsiah J (2015) The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol 71:40–56. https://doi.org/10.1016/j.vph.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  6. Stephenson J, Nutma E, Valk PVD, Amor S (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154:204–219. https://doi.org/10.1111/imm.12922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karrasch T, Obermeier F, Straub RH (2014) Systemic metabolic signaling in acute and chronic gastrointestinal inflammation of inflammatory bowel diseases. Horm Metab Res 46:445–451. https://doi.org/10.1055/s-0034-1374587

    Article  CAS  PubMed  Google Scholar 

  8. Kumar RS, Antonisamy P, Almansour AI, Arumugam N, Periyasami G, Altaf M, Kim HR, Kwon KB (2018) Functionalized spirooxindole-indolizine hybrids: stereoselective green synthesis and evaluation of anti-inflammatory effect involving TNF-α and nitrite inhibition. Eur J Med Chem 152:417–423. https://doi.org/10.1016/j.ejmech.2018.04.060

    Article  CAS  PubMed  Google Scholar 

  9. Wang W, Wu YL, Chen XX, Zhang P, Li H, Chen LX (2019) Synthesis of new ent-labdane diterpene derivatives from andrographolide and evaluation of their anti-inflammatory activities. Eur J Med Chem 162:70–79. https://doi.org/10.1016/j.ejmech.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  10. Liu ZG, Tang LG, Zhu HP, Xu TT, Qiu CY, Zheng SQ, Gu YG, Feng JP, Zhang YL, Liang G (2016) Design, synthesis, and structure-activity relationship study of novel indole-2-carboxamide derivatives as anti-inflammatory agents for the treatment of sepsis. J Med Chem 59:4637–4650. https://doi.org/10.1021/acs.jmedchem.5b02006

    Article  CAS  PubMed  Google Scholar 

  11. Chen GZ, Zhang YL, Liu X, Fang QL, Wang Z, Fu LL, Liu ZG, Wang Y, Zhao YJ, Li XK, Liang G (2016) Discovery of a new inhibitor of myeloid differentiation 2 from cinnamamide derivatives with anti-Inflammatory activity in sepsis and acute lung injury. J Med Chem 59:2436–2451. https://doi.org/10.1021/acs.jmedchem.5b01574

    Article  CAS  PubMed  Google Scholar 

  12. Albrecht W, Unger A, Bauer SM, Laufer SA (2017) Discovery of N-{4-[5-(4-Fluorophenyl)-3-methyl-2-methylsulfanyl-3H-imidazol-4-yl]-pyridin-2-yl}-acetamide (CBS-3595), a dual p38α MAPK/PDE-4 inhibitor with activity against TNFα-related diseases. J Med Chem 60:5290–5305. https://doi.org/10.1021/acs.jmedchem.6b01647

    Article  CAS  PubMed  Google Scholar 

  13. Imam F, Al-Harbi NO, Al-Harbi MM, Ansari MA, Zoheir KMA, Iqbal M, Anwer MK, Hoshani ARA, Attia SM, Ahmad SF (2015) Diosmin downregulates the expression of T cell receptors, pro-inflammatory cytokines and NF-κB activation against LPS-induced acute lung injury in mice. Pharmacol Res 102:1–11. https://doi.org/10.1016/j.phrs.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  14. Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–891. https://doi.org/10.1038/nature01326

    Article  CAS  PubMed  Google Scholar 

  15. Schulte W, Bernhagen J, Bucala R (2013) Cytokines in sepsis: potent immunoregulators and potential therapeutic targets—an updated view. Mediat Inflamm 2013:165974. https://doi.org/10.1155/2013/165974

    Article  CAS  Google Scholar 

  16. Checker R, Sandur SK, Sharma D, Patwardhan RS, Jayakumar S, Kohli V, Sethi G, Aggarwal BB, Sainis KB (2012) Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-κB, AP-1 and NF-AT. PLoS ONE 7:e31318. https://doi.org/10.1371/journal.pone.0031318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nascimento PGGD, Lemos TLG, Bizerra AMC, Arriaga ÂMC, Ferreira DA, Santiago GMP, Braz-Filho R, Costa JGM (2014) Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules 19:1317–1327. https://doi.org/10.3390/molecules19011317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Crosas-Molist E, Fabregat I (2016) Role of NADPH oxidases in the redox biology of liver fibrosis. Redox Biol 6:106–111. https://doi.org/10.1016/j.redox.2015.07.005

    Article  CAS  Google Scholar 

  19. Huang LH, Zheng YF, Lu YZ, Song CJ, Wang YG, Yu B, Liu HM (2012) Synthesis and biological evaluation of novel steroidal[17,16-d][1,2,4]triazolo[1,5-a]pyrimidines. Steroids 77:710–715. https://doi.org/10.1016/j.steroids.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  20. Wu J, Ma S, Zhang TY, Wei ZY, Wang HM, Guo FY, Zheng CJ, Piao HR (2019) Synthesis and biological evaluation of ursolic acid derivatives containing an aminoguanidine moiety. Med Chem Res 28:959–973. https://doi.org/10.1007/s00044-019-02349-x

    Article  CAS  Google Scholar 

  21. Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75:639–653. https://doi.org/10.1016/j.lfs.2003.10.042

    Article  CAS  PubMed  Google Scholar 

  22. Li B, Yang YG, Chen LZ, Chen SC, Zhang J, Tang WJ (2017) 18α-Glycyrrhetinic acid monoglucuronide as an anti-inflammatory agent through suppression of the NF-κB and MAPK signaling pathway. MedChemComm 8:1498–1504. https://doi.org/10.1039/c7md00210f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Campbell IK, Roberts LJ, Wicks IP (2003) Molecular targets in immune-mediated diseases: the case of tumour necrosis factor and rheumatoid arthritis. Immunol Cell Biol 81:354–366. https://doi.org/10.1046/j.0818-9641.2003.01185.x

    Article  CAS  PubMed  Google Scholar 

  24. Spielmann S, Kerner T, Ahlers O, Keh D, Gerlach M, Gerlach H (2001) Early detection of increased tumour necrosis factor alpha (TNFalpha) and soluble TNF receptor protein plasma levels after trauma reveals associations with the clinical course. Acta Anaesthesiol Scand 45:364–370. https://doi.org/10.1034/j.1399-6576.2001.045003364.x

    Article  CAS  PubMed  Google Scholar 

  25. Wei ZY, Chi KQ, Wang KS, Wu J, Liu LP, Piao HR (2018) Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents. Bioorg Med Chem Lett 28:1797–1803. https://doi.org/10.1016/j.bmcl.2018.04.021

    Article  CAS  PubMed  Google Scholar 

  26. Zheng XJ, Li CS, Cui MY, Song ZW, Bai XQ, Liang CW, Wang HY, Zhang TY (2020) Synthesis, biological evaluation of benzothiazole derivatives bearing a 1,3,4-oxadiazole moiety as potential anti-oxidant and anti-inflammatory agents. Bioorg Med Chem Lett 30:127237. https://doi.org/10.1016/j.bmcl.2020.127237

    Article  CAS  PubMed  Google Scholar 

  27. Lui HK, Gao W, Cheung KC, Jin WB, Sun N, Kan JWY, Wong ILK, Chiou JC, Lin DC, Chan EWC, Leung YC, Chan TH, Chen S, Chan KF, Wong KY (2019) Boosting the efficacy of anti-MRSA β-lactam antibiotics via an easily accessible, noncytotoxic and orally bioavailable FtsZ inhibitor. Eur J Med Chem 163:95–115. https://doi.org/10.1016/j.ejmech.2018.11.052

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Jilin Province (No. 20190201077JC); The Health Department of Jilin Province (No. 2019ZC007); The Doctoral Foundation of Jilin Medical University (No. JYBS2018007); and The Jilin Province Students’ Program for Innovation and Entrepreneurship Training (No. 202013706011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian-Yi Zhang, Ying Jin or Sheng-Jun Piao.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, TY., Li, CS., Li, P. et al. Synthesis and evaluation of ursolic acid-based 1,2,4-triazolo[1,5-a]pyrimidines derivatives as anti-inflammatory agents. Mol Divers 26, 27–38 (2022). https://doi.org/10.1007/s11030-020-10154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10154-7

Keywords

Navigation