Skip to main content
Log in

Determination of Johnson–Cook Material Parameters for Armour Plate Using DIC and FEM

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Understanding of material behavior of armour steel under large deformations and high strains during loading is very crucial in designing steel structures for various applications. Johnson–Cook flow stress and Johnson–Cook failure models were adopted for modeling and predicting the material flow behavior of armour plate. The material parameters of Johnson–Cook flow stress have been determined experimentally from tests performed at different strain rates (10−4–1550 s−1) and temperatures (25–600 °C). The damage parameters of Johnson–Cook failure model were determined through experiments on flat tensile specimens in combination with finite element simulation. Using these materials parameters, finite element simulations were performed on notch specimens of different radii between 2 mm and 20 mm loaded under tension. Load-strain curves were in good agreement with the experimentally obtained data. Triaxiality obtained from simulation were matched against the reported values from the literature.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.J. Manganello, K.H. Abbott, J. Mater. 7, 231 (1972)

    CAS  Google Scholar 

  2. J.A. Zukas, D.R. Scheffler, Int. J. Solids Struct. 38, 3321 (2001)

    Article  Google Scholar 

  3. G.R. Johnson, W.H. Cook, Eng. Fract. Mech. 21, 31 (1985)

    Article  Google Scholar 

  4. N. Kılıc, S. Bedir, A. Erdik, B. Ekici, A. Tasdemirci, M. Guden, Mater. Des. 63, 427 (2014)

    Article  Google Scholar 

  5. M.A. Iqbal, K. Senthil, P. Sharma, N.K. Gupta, Int. J. Impact Eng. 96, 146 (2016)

    Article  Google Scholar 

  6. A. Banerjee, S. Dhar, S. Acharyya, D. Datta, N. Nayak, Mater. Sci. Eng. A 640, 200 (2015)

    Article  CAS  Google Scholar 

  7. P. Skoglund, M. Nilsson, A. Tjernberg, J. Phys. 134, 197 (2006)

    CAS  Google Scholar 

  8. F.A. Mcclintock, J. Appl. Mech. 35, 363 (1968)

    Article  Google Scholar 

  9. J.R. Rice, D.M. Tracey,  J. Mech. Phys. Solids 17, 201 (1969)

    Article  Google Scholar 

  10. J.W. Hancock, A.C. Mackenzie, J. Mech. Phys. Solids 24, 147 (1976)

    Article  Google Scholar 

  11. P.W. Bridgman, Studies in Large Plastic Flow and Fracture (McGraw-Hill, New York, 1952), pp. 9–37

    Google Scholar 

  12. O.S. Hopperstad, T. Børvik, M. Langseth, K. Labibes, C. Albertini, Euro. J. Mech. A 22, 1 (2003)

    Article  Google Scholar 

  13. B. Erice, F. Gálvez, D.A. Cendón, V. Sánchez-Gálvez, Eng. Fract. Mech. 79, 1 (2012)

    Article  Google Scholar 

  14. A. Díaz, J.M. Alegre, I.I. Cuesta, Theor. Appl. Fract. Mech. 90, 294 (2017)

    Article  Google Scholar 

  15. B. Erice, C.C. Roth, D. Mohr, Mech. Mater. 116, 11 (2018)

    Article  Google Scholar 

  16. Y. Bai, X. Teng, T. Wierzbicki, J. Eng. Mater. Technol. 131, 021002 (2009)

    Article  Google Scholar 

  17. J.H. Kim, D. Kim, H.N. Han, F. Barlat, M.G. Lee, Mater. Sci. Eng. A 559, 222 (2013)

    Article  CAS  Google Scholar 

  18. S.-H. Joo, H. Kato, K. Gangwar, S. Lee, H.S. Kim, Intermetallics 32, 21 (2013)

    Article  CAS  Google Scholar 

  19. S.-H. Joo, J.K. Lee, J.-M. Koo, D.W. Suh, S. Lee, H.S. Kim, Scripta Mater. 68, 245 (2013)

    Article  CAS  Google Scholar 

  20. A.R. Chintha, K. Valtonen, V.T. Kuokkala, S. Kundu, M.J. Peet, H.K.D.H. Bhadeshia, Wear 428, 430 (2019)

    Article  Google Scholar 

  21. K.K. Namala, P. Mahajan, N. Bhatnagar, Int. J. Comput. Methods Eng. Sci. Mech. 15, 203 (2014)

    Article  CAS  Google Scholar 

  22. G.E. Dieter, Mechanical Metallurgy (McGraw-Hill Book Co., New York, 1988), pp. 275–324

    Google Scholar 

Download references

Acknowledgements

This research was supported by Tata Steel, Jamshedpur (RD/PROP/COL/273/2017). The authors are thankful to TBRL,DRDO, Chandigarh for conducting high strain rate tests and to NML-CSIR, Jamshedpur for conducting high temperature tests. Dr. Mohit Gupta is thankfully acknowledged for useful discussions.

Funding

This research was supported by Tata Steel, Jamshedpur, India (RD/PROP/COL/273/2017).

Author information

Authors and Affiliations

Authors

Contributions

The specific contributions made by each author are listed below. SK: Conceptualization, Methodology, Investigation, Roles/Writing—original draft. KK: Software, Validation, Formal analysis. SC: Resources, Investigation. PKS: Resources, Investigation. RKV: Project administration. PM: Conceptualization, Methodology, Supervision, Writing—review and Editing, Funding Acquisition.

Corresponding author

Correspondence to Sangeeta Khare.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khare, S., Kumar, K., Choudhary, S. et al. Determination of Johnson–Cook Material Parameters for Armour Plate Using DIC and FEM. Met. Mater. Int. 27, 4984–4995 (2021). https://doi.org/10.1007/s12540-020-00895-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00895-3

Keywords

Navigation