Skip to main content
Log in

An efficient self-stress design of tensegrity shell structures

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Distribution and level of self-stress has a profound impact on the structural behavior of tensegrity systems. The problems associated with self-stress implementation preclude designing tensegrity structures for civil engineering application. To achieve the feasible self-stress state of a tensegrity shell structure, an efficient procedure based on solving an optimization problem in conjunction with multi constraint equations on group subdivisions is presented in the current study. Several tensegrity shell configurations are utilized to demonstrate the capability of the proposed procedure. The method provides superior performance compared with the other conventional methods of obtaining desired self-stress distributions. For a given shell configuration, group division is of paramount importance with respect to the regularity and uniformity of self-stress distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Tang Y, Yin J (2017) Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility. Extrem Mech Lett 12:77–85. https://doi.org/10.1016/j.eml.2016.07.005

    Article  Google Scholar 

  2. Bertoldi K, Vitelli V, Christensen J, Van Hecke M (2017) Flexible mechanical metamaterials. Nat Rev Mater 2:17066. https://doi.org/10.1038/natrevmats.2017.66

    Article  Google Scholar 

  3. Skelton RE, De Oliveira MC (2009) Tensegrity systems. Springer, New York. https://doi.org/10.1007/978-0-387-74242-7

    Book  MATH  Google Scholar 

  4. Wang BB (2004) Free-standing tension structures: from tensegrity systems to cable-strut systems. Spon Press

  5. Liew JYR, Lee BH, Wang BB (2003) Innovative use of star prism (SP) and di-pyramid (DP) for spatial structures. J Constr Steel Res 59:335–357. https://doi.org/10.1016/S0143-974X(02)00037-8

    Article  Google Scholar 

  6. Pellegrino S (1992) A class of tensegrity domes. Int J Sp Struct 7:127–142. https://doi.org/10.1177/026635119200700206

    Article  Google Scholar 

  7. Kmet S, Mojdis M (2013) Time-dependent analysis of cable domes using a modified dynamic relaxation method and creep theory. Comput Struct 125:11–22. https://doi.org/10.1016/j.compstruc.2013.04.019

    Article  Google Scholar 

  8. Fraternali F, Carpentieri G, Amendola A (2015) On the mechanical modeling of the extreme softening/stiffening response of axially loaded tensegrity prisms. J Mech Phys Solids 74:136–157. https://doi.org/10.1016/j.jmps.2014.10.010

    Article  MATH  Google Scholar 

  9. Zhang J, Ohsaki M (2005) Form-finding of self-stressed structures by an extended force density method. J Int Assoc Shell Spat Struct 46:159–166

    Google Scholar 

  10. Connelly R, Terrell M (1995) Globally rigid symmetric tensegrities tensegrites symetriques globalement rigides. Struct Topol 21:59–78

    MATH  Google Scholar 

  11. Vassart N, Motro R (1999) Multiparametered formfinding method: application to tensegrity systems. Int J Sp Struct 14:147–154. https://doi.org/10.1260/0266351991494768

    Article  Google Scholar 

  12. Sultan C, CorlessM, Skelton RE (1999) Reduced prestressability conditions for tensegrity structures. In: Proceedings of 40th ASME structure dynamic material conference, pp 2300–2308

  13. Quirant J, Kazi-Aoual MN, Laporte R (2003) Tensegrity systems: the application of linear programmation in search of compatible selfstress states. J Int Assoc Shell Spatial Struct 44:33–50. http://cat.inist.fr/?aModele=afficheN&cpsidt=14991376

  14. Quirant J (2007) Selfstressed systems comprising elements with unilateral rigidity: selfstress states, mechanisms and tension setting. Int J Sp Struct 22:203–214. https://doi.org/10.1260/026635107783133807

    Article  Google Scholar 

  15. Pellegrino S (1993) Structural computations with the singular value decomposition of the equilibrium matrix. Int J Solids Struct 30:3025–3035. https://doi.org/10.1016/0020-7683(93)90210-X

    Article  MATH  Google Scholar 

  16. Yuan X, Dong S (2002) Nonlinear analysis and optimum design of cable domes. Eng Struct 24:965–977. https://doi.org/10.1016/S0141-0296(02)00017-2

    Article  Google Scholar 

  17. Yuan X, Dong S (2003) Integral feasible prestress of cable domes. Comput Struct 81:2111–2119. https://doi.org/10.1016/S0045-7949(03)00254-2

    Article  Google Scholar 

  18. Yuan X, Chen L, Dong S (2007) Prestress design of cable domes with new forms. Int J Solids Struct 44:2773–2782. https://doi.org/10.1016/j.ijsolstr.2006.08.026

    Article  MATH  Google Scholar 

  19. Quirant J, Kazi-Aoual MNN, Motro R (2003) Designing tensegrity systems: the case of a double layer grid. Eng Struct 25:1121–1130. https://doi.org/10.1016/S0141-0296(03)00021-X

    Article  Google Scholar 

  20. Tran HC, Lee J (2010) Advanced form-finding of tensegrity structures. Comput Struct 88:237–246. https://doi.org/10.1016/j.compstruc.2009.10.006

    Article  Google Scholar 

  21. Tran HC, Park HS, Lee J (2012) A unique feasible mode of prestress design for cable domes. Finite Elem Anal Des 59:44–54. https://doi.org/10.1016/j.finel.2012.05.004

    Article  Google Scholar 

  22. Hanaor A (1988) Prestressed pin-jointed structures-Flexibility analysis and prestress design. Comput Struct 28:757–769. https://doi.org/10.1016/0045-7949(88)90416-6

    Article  MATH  Google Scholar 

  23. Pellegrino S, Calladine CR (1986) Matrix analysis of statically and kinematically indeterminate frameworks. Int J Solids Struct 22:409–428. https://doi.org/10.1016/0020-7683(86)90014-4

    Article  Google Scholar 

  24. Shekastehband B, Abedi K, Dianat N (2013) Experimental and numerical study on the self-stress design of tensegrity systems. Meccanica 48:2367–2389. https://doi.org/10.1007/s11012-013-9754-3

    Article  MATH  Google Scholar 

  25. Chen Y, Feng J, Ma R, Zhang Y (2015) Efficient symmetry method for calculating integral prestress modes of statically indeterminate cable-strut structures. J Struct Eng 141:1–11. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001228

    Article  Google Scholar 

  26. Lee S, Lee J (2014) Optimum self-stress design of cable-strut structures using frequency constraints. Int J Mech Sci 89:462–469. https://doi.org/10.1016/j.ijmecsci.2014.10.016

    Article  Google Scholar 

  27. Ma Q, Ohsaki M, Chen Z, Yan X (2018) Step-by-step unbalanced force iteration method for cable-strut structure with irregular shape. Eng Struct 177:331–344. https://doi.org/10.1016/j.engstruct.2018.09.081

    Article  Google Scholar 

  28. Motro R (2003) Tensegrity: structural systems for the future. Kogan Page Sci. https://doi.org/10.1016/B978-1-903996-37-9.X5028-8

    Article  Google Scholar 

  29. S.H. Juan, J.M. Mirats Tur, Tensegrity frameworks: Static analysis review, Mech. Mach. Theory. 43 (2008) 859–881. https://doi.org/10.1016/j.mechmachtheory.2007.06.010

  30. N. Ploskas, N. Samaras, Linear Programming Using MATLAB, 1st ed., Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-65919-0

  31. Shekastehband B, Abedi K, Dianat N, Chenaghlou MR (2012) Experimental and numerical studies on the collapse behavior of tensegrity systems considering cable rupture and strut collapse with snap-through. Int J Non Linear Mech 47:751–768. https://doi.org/10.1016/j.ijnonlinmec.2012.04.004

    Article  Google Scholar 

Download references

Funding

This study received no grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Shekastehband.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaaghazadeh, K., Abedi, K. & Shekastehband, B. An efficient self-stress design of tensegrity shell structures. Meccanica 56, 147–168 (2021). https://doi.org/10.1007/s11012-020-01260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01260-9

Keywords

Navigation