Skip to main content

Advertisement

Log in

Interactions between land use, pathogens, and climate change in the Monte Pisano, Italy 1850–2000

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Climate change, land use change, invasive species, and pests can combine to cause changes in species distributions. However, unlike climate change, future land use and ecological interactions are unpredictable. One strategy for confronting this unpredictability is to use interdisciplinary approaches.

Objectives

In this paper we demonstrate how historical ecology and SDM modeling can be combined to reconstruct the impacts of land use change, invasive pathogens, and climate change upon the landscape of the Monte Pisano of Central Italy over the last two centuries.

Methods

Species distribution and climate modeling are combined with early nineteenth century land use records and oral history, in order to reconstruct changes in species distributions of sweet chestnut and maritime pine on the Monte Pisano (Central Italy).

Results

The extent of pine forest tripled while chestnut forest halved since 1850. Climatic conditions changed, with temperatures increasing by over 1.5 °C. These climatic changes are insufficient to account for the shift in chestnut and pine distribution, which was mainly driven by socioeconomic change that caused changes in land use, a process accelerated by pathogens that eliminated low elevation chestnut groves.

Conclusions

In Mediterranean mountains, where human activities have impacted biota for a long time, changes in land management and climate change interacting on different temporal scales, can affect the magnitude of changes in species distributions. The effects of climate change can be partially addressed through changing land use, including by reducing fire frequency or improved phytosanitary controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agnoletti M (2007) The degradation of traditional landscape in a mountain area of Tuscany during the 19th and 20th centuries: Implications for biodiversity and sustainable management. For Ecol Manage 249:5–17

    Article  Google Scholar 

  • Alba-Sánchez F, López-Sáez JA, Pando BB-d, Linares JC, Nieto‐Lugilde D, López‐Merino L (2010) Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution models. Divers Distrib 16:214–228

    Article  Google Scholar 

  • Anonymous (1884) Sulla e ginestra. L’Agricoltore: Periodico Mensuale del Comizio Agrario Lucchese Anno XX:173–178.

  • Araújo MB, Humphries CJ, Densham PJ, Lampinen R, Hagemeijer WJM, Mitchell-Jones AJ, Gasc JP (2001) Would environmental diversity be a good surrogate for species diversity? Ecography 24:103–110

    Article  Google Scholar 

  • Baillie J, Hilton-Taylor C, Stuart S (2004) 2004 IUCN red list of threatened species. A global species assessment. IUCN, Gland

    Google Scholar 

  • Barton CM, Ullah IIT, Bergin SM, Mitasova H, Sarjoughian H (2012) Looking for the future in the past: Long-term change in socioecological systems. Ecol Model 241:42–53

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertacchi A, Sani A, Tomei PE (2004) La Vegetazione del Monte Pisano. Felici Editori, Pisa

    Google Scholar 

  • Blondel J (2006) The ‘Design’ of mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum Ecol 34:713–729

    Article  Google Scholar 

  • Bonuccelli P.F. (1939) Il Castagno nella Lucchesia. Reale Accademia Lucchese di Scienze, Lettere ed Arti:2–26.

  • Brasier CM (2001) Rapid evolution of introduced plant pathogens via interspecific hybridization is leading to rapid evolution of Dutch elm disease and other fungal plant pathogens. Bioscience 51:123–133

    Article  Google Scholar 

  • Brunetti M, Lentini G, Maugeri M, Nanni T, Auer I, Böhm R, Schöner W (2009) Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. Int J Climatol 29:2197–2225

    Article  Google Scholar 

  • Brunetti M, Lentini G, Maugeri M, Nanni T, Simolo C, Spinoni J (2012) Projecting North Eastern Italy temperature and precipitation secular records onto a high-resolution grid. Phys Chem Earth Parts A/B/C 40–41:9–22

    Article  Google Scholar 

  • Brunetti M, Maugeri M, Monti F, Nanni T (2006) Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int J Climatol 26:345–381

    Article  Google Scholar 

  • Brunetti M, Maugeri M, Nanni T, Simolo C, Spinoni J (2014) High-resolution temperature climatology for Italy: interpolation method intercomparison. Int J Climatol 34:1278–1296

    Article  Google Scholar 

  • Caruso G. (1874) Intorno alla malattia dei castagni ne’ Monti Pisani. Relazione al Comizio Agrario di Pisa, Letta Nella Seduta Generale del 1 Luglio 1874. L’Italia Agricola:339–340.

  • Casazza G, Giordani P, Benesperi R, Pisanu S, Mariotti MG et al (2014) Climate change hastens the urgency of conservation for range-restricted plant species in the central-northern Mediterranean region. Biol Cons 179:129–138

    Article  Google Scholar 

  • Charney ND, Babst F, Poulter B, Record S, Trouet VM, Frank D, Enquist BJ, Evans MEK (2016) Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol Lett 19:1119–1128

    Article  PubMed  Google Scholar 

  • Conedera M, Stanga P, Oester B, Bachmann P (2001) Different post-culture dynamics in abandoned chestnut orchards. For Snow Landsc Res 76:487–492

    Google Scholar 

  • Crespi A, Brunetti M, Lentini G, Maugeri M (2018) 1961–1990 high-resolution monthly precipitation climatologies for Italy. Int J Climatol 38:878–895

    Article  Google Scholar 

  • Crumley CL (2017) Historical ecology and the study of landscape. Landsc Res 42:S65–S73

    Article  Google Scholar 

  • Crumley CL, Kolen JCA, Kleijn M, de, Manen N. van, (2017) Studying long-term changes in cultural landscapes: outlines of a research framework and protocol. Landsc Res 42:880–890

    Article  Google Scholar 

  • Dal Maso E, Montecchio L (2015) Large-scale fuzzy rule-based prediction for suitable chestnut ink disease sites: a case study in north-east Italy. Forest Pathol 45:311–323

    Article  Google Scholar 

  • Dale VH (1997) The relationship between land-use change and climate Change. Ecol Appl 7:753–769

    Article  Google Scholar 

  • Daly C (2006) Guidelines for assessing the suitability of spatial climate data sets. Int J Climatol 26:707–721

    Article  Google Scholar 

  • Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28:2031–2064

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Ficetola GF, Maoirano L, Falcucci A, Dendoncker N, Boitani L, Padoa-Schioppa E, Miaud C, Thuiller W (2010) Knowing the past to predict the future: land-use change and the distribution of invasive bullfrogs. Glob Change Biol 16:528–537

    Article  Google Scholar 

  • Gabbrielli A (1987) Le superficie boscate in Toscana dal 1834 al 1929. L’Italia Forestale e Montana 5:314–324

    Google Scholar 

  • Giannini R, Gabbrielli A (2013) Evolution of multifunctional land-use systems in mountain areas in Italy. Ital J For Mt Environ 68(5):259–268

    Google Scholar 

  • García-Valdés R, Zavala MA, Araújo MB, Purves DW (2013) Chasing a moving target: projecting climate change induced shifts in non-equilibrial tree species distributions. J Ecol 101:441–453

    Article  Google Scholar 

  • Gibelli G. (1876) Malattia del Castagno. Gazzetta Ufficiale del Regno D’Italia:258–264.

  • Gimmi U, Poulter B, Wolf A, Portner H, Weber P, Bürgi M (2013) Soil carbon pools in Swiss forests show legacy effects from historic forest litter raking. Landsc Ecol 28:835–846

    Article  Google Scholar 

  • Grava M (2012) From the archives to web 2.0: the use of GIS and WebGIS applications in industrial archeology IA. J Soc Indust Archeol 38:5–18

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Hanberry BB (2013) Changing eastern broadleaf, southern mixed, and northern mixed forest ecosystems of the eastern United States. For Ecol Manage 306:171–178

    Article  Google Scholar 

  • Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. (2013).dismo: Species distribution modelling. R package version0.9–3. http://CRAN.R-project.org/package=dismo. Accessed 1 July 2020

  • IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva. pp. 151.

  • Keeley JE (2012) Ecology and evolution of pine life histories. Ann For Sci 69:445–453

    Article  Google Scholar 

  • Klijn J.A. (2004) Driving forces behind landscape transformation in Europe, from a conceptual approach to policy options. In: The New Dimensions of the European Landscapes, Springer Netherlands. Jongman R. H. G., Dordrecht, pp 201–218. [online] URL: http://library.wur.nl/WebQuery/wurpubs/334790. Accessed 14 Nov 2018

  • Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. Annu Rev Environ Resour 28:205–241

    Article  Google Scholar 

  • Mantyka-Pringle CS, Visconti P, Di Marco M, Martin TG, Rondinini C, Rhodes JR (2015) Climate change modifies risk of global biodiversity loss due to land-cover change. Biol Cons 187:103–111

    Article  Google Scholar 

  • Massoni G (1999) La pieve e la comunità di Vorno. Pacini Fazzi, Lucca

    Google Scholar 

  • Mathews AS (2018) Landscapes and throughscapes in Italian chestnut worlds: thinking dramatically about the Anthropocene. Cult Anthropol 33:386–414

    Article  Google Scholar 

  • Mazzarosa A (1846) Le Pratiche della Campagna Lucchese. Tipografia di Giuseppe Giusti, Lucca

    Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Munteanu C, Kuemmerle T, Boltiziar M, Butsic V, Gimmi U, Lúboš H, Kaim D, Király G, Konkoly-Gyuró É, Kozak J, Lieskovský J, Mojses M, MüllerD Ostafin K, Ostapowicz K, Shandra O, Štych P, Walker S, Radeloff VC (2014) Forest and agricultural land change in the Carpathian region—A meta-analysis of long-term patterns and drivers of change. Land Use Policy 38:685–697

    Article  Google Scholar 

  • Mutke S, Calama R, Gonzalez-Martınez SC, Montero G, Gordo FJ, Bono D, Gil L (2012) Mediterranean stone pine: botany and horticulture. Horticultural Rev 39:153–201

    Google Scholar 

  • New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238

    Article  Google Scholar 

  • Pavari A (1949) Chestnut blight in Europe. Unasylva 3:8–13

    Google Scholar 

  • Pedreschi L (1963) I terrazzamenti agrari in Val di Serchio. Libreria goliardica, Pisa

    Google Scholar 

  • Pezzi G, Maresi G, Conedera M, Ferrari C (2011) Woody species composition of chestnut stands in the Northern Apennines: the result of 200 years of changes in land use. Landsc Ecol 26:1463–1476

    Article  Google Scholar 

  • Plieninger T, Draux H, Fagerholm N, Bieling C, Bürgi M, Kizos T, Kuemmerle T, Primdahl J, Verburg PH (2016) The driving forces of landscape change in Europe: a systematic review of the evidence. Land Use Policy 57:204–214

    Article  Google Scholar 

  • Ponti L., Gutierrez A.P., Ruti P.M., Dell’Aquila A. (2014) Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proceedings of the National Academy of Sciences:201314437.

  • Puccinelli M (1869) Giornale di agricoltura. Lucca, Italy

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL: https://www.R-project.org/

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles 13:997–1027

    Article  CAS  Google Scholar 

  • Randin CF, Paulsen J, Vitasse Y, Kollas C, Wohlgemuth T, Zimmermann NE, Körner C (2013) Do the elevational limits of deciduous tree species match their thermal latitudinal limits? Glob Ecol Biogeogr 22:913–923

    Article  Google Scholar 

  • Riordan EC, Rundel PW (2014) Land use compounds habitat losses under projected climate change in a threatened california ecosystem. PLoS ONE 9:e86487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roy BA, Alexander HM, Davidson J et al (2014) Increasing forest loss worldwide from invasive pests requires new trade regulations. Front Ecol Environ 12:457–465

    Article  Google Scholar 

  • Santini A, Ghelardini L, Pace C, Desprez-Loustau ML, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T, Hantula J, Holdenrieder O, Jankovsky L, Jung T, Jurc D, Kirisits T, Kunca A, Lygis V, Malecka M, Marcais B, Schmitz S, Schumacher J, Solheim H, Solla A, Szabò I, Tsopelas P, Vannini A, Vettraino AM, Webber J, Woodward S, Stenlid J (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250

    Article  CAS  PubMed  Google Scholar 

  • Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416

    Article  Google Scholar 

  • Schoener TW (1970) Nonsynchronous Spatial Overlap of Lizards in Patchy Habitats. Ecology 51:408–418

    Article  Google Scholar 

  • Silva E, Badeau V, Legay M, Corcket E, Dupouey J-L (2012) Tracking human impact on current tree species distribution using plant communities. J Veg Sci 23:313–324

    Article  Google Scholar 

  • Sala OE (2000) Global biodiversity scenarios for the Year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Sirami C, Caplat P, Popy S, Clamens A, Arlettaz R, Jiguet F, Brotons L, Martin J-L (2017) Impacts of global change on species distributions: obstacles and solutions to integrate climate and land use. Glob Ecol Biogeogr 26:385–394

    Article  Google Scholar 

  • Sluiter R, de Jong SM (2007) Spatial patterns of Mediterranean land abandonment and related land cover transitions. Landsc Ecol 22:559–576

    Article  Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv Inform 2:1–10

    Google Scholar 

  • Svenning J-C, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573

    Article  Google Scholar 

  • Tasser E, Leitinger G, Tappeiner U (2017) Climate change versus land-use change: what affects the mountain landscapes more? Land Use Policy 60:60–72

    Article  Google Scholar 

  • Terral J-F, Alonso N, Capdevila RBi, Chatti N, Fabre L, Fiorentino G, Marinval P, Jordá GP, Pradat B, Rovira N, Alibert P (2004) Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J Biogeogr 31:63–77

    Article  Google Scholar 

  • Thuiller W (2007) Biodiversity: climate change and the ecologist. Nature 448:550–552

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Brotons L, Araújo MB, Lavorel S (2004) Effects of restricting environmental range of data to project current and future species distributions. Ecography 27:165–172

    Article  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD: a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • USGS (1996) Global 30 Arc-Second Elevation (GTOPO30) | The Long Term Archive. URL: https://lta.cr.usgs.gov/GTOPO30. Accessed 28 Nov 2018

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

GC was supported by the European Union’s Horizon 2020 research and innovation program under grant agreement No 793226. ASM was supported by the UCSC Committee on Research and the Dumbarton Oaks Garden and Landscape Studies program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. Mathews.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is an interdisciplinary paper so we seek to spell out author contributions clearly. Initial thinking, research design and writing were done by ASM and GC, species distribution modelling by GC, climate modelling by MB, archival research and spatial analysis of historical data by FM, with consultation and support by VS, oral history and ethnographic research by ASM and FM. Historical land use data for the valley of Calci was generously provided by Massimiliano Grava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casazza, G., Malfatti, F., Brunetti, M. et al. Interactions between land use, pathogens, and climate change in the Monte Pisano, Italy 1850–2000. Landscape Ecol 36, 601–616 (2021). https://doi.org/10.1007/s10980-020-01152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-01152-z

Keywords

Navigation