Skip to main content
Log in

Bonding Mechanisms in Cold Spray: Influence of Surface Oxidation During Powder Storage

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cold spray is a solid-state process in which solid particles are subjected to severe plastic deformation to form a coating. The effect of naturally occurring oxides on bonding in the cold spray was investigated in this work. Deposition characteristics of copper powder with different surface oxide thicknesses on steel substrate were examined using a local pull-off test. This enables the investigation of individual particle/substrate interfaces. X-ray photoelectron spectroscopy was used to study thoroughly the powder surface chemistry and the oxide thickness as a function of exposure time. This study revealed that the oxide film thickness grew from 6 nm for the as-received powder to 11.6 nm after 2 months of exposure to atmospheric conditions. Scanning electron microscopy and x-ray energy dispersive spectroscopy were used to characterize the particle/substrate interfacial bonding. Adhesion test results show that the bond strength is highly influenced by the surface oxide thickness. Different bonding behaviors and a drop in coating deposition efficiency were observed as the oxide thickness increased. Finite element simulations supplemented our understanding of the particle adhesion dynamics as the oxide film thickness increases. They were also used to study the surface oxide cleanup and bonding mechanism for particles with different oxide film thicknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. V.K. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, Elsevier, Amsterdam, 2007

    Book  Google Scholar 

  2. R. McCune, A. Papyrin, J. Hall, W. Riggs, P. Zajchowski, An Exploration of the Cold Gas-Dynamic Spray Method for Several Materials Systems, in Adv. Therm. Spray Sci. Technol., Proc. Natl. Therm. Spray Conf., 8th, p. 1–5 (1995).

  3. D. Gilmore, R. Dykhuizen, R. Neiser, M. Smith, and T. Roemer, Particle Velocity And Deposition Efficiency in The Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582. https://doi.org/10.1361/105996399770350278

    Article  CAS  Google Scholar 

  4. A. Alkhimov, S. Klinkov, V. Kosarev, and A. Papyrin, Gas-Dynamic Spraying Study of a Plane Supersonic Two-Phase Jet, J. Appl. Mech. Tech. Phys., 1997, 38(2), p 324-330

    Article  CAS  Google Scholar 

  5. P.L. Fauchais, J.V. Heberlein, and M. Boulos, Thermal Spray Fundamentals: From Powder to Part, Springer, Berlin, 2014

    Book  Google Scholar 

  6. H.A. Mohamed and J. Washburn, Mechanism of Solid State Pressure Welding, Weld. J., 1975, 54, p 302s-310s

    Google Scholar 

  7. N. Bay, Cold Pressure Welding—The Mechanisms Governing Bonding, ASME. J. Eng. Ind., 1979, 101(2), p 121-127. https://doi.org/10.1115/1.3439484

    Article  CAS  Google Scholar 

  8. N.F. Kazakov, Diffusion Bonding of Materials, Elsevier, Amsterdam, 2013

    Google Scholar 

  9. C. Chen, Y. Xie, R. Huang, S. Deng, Z. Ren, and H. Liao, On the Role of Oxide Film’s Cleaning Effect into the Metallurgical Bonding During Cold Spray, Mater. Lett, 2018, 210(Supplement C), p 199-202. https://doi.org/10.1016/j.matlet.2017.09.024

    Article  CAS  Google Scholar 

  10. H. Assadi, H. Kreye, F. Gärtner, and T. Klassen, Cold Spraying—A Materials Perspective, Acta Mater., 2016, 116, p 382-407. https://doi.org/10.1016/j.actamat.2016.06.034

    Article  CAS  Google Scholar 

  11. S. Yin, X. Wang, W. Li, H. Liao, and H. Jie, Deformation Behavior of the Oxide Film on the Surface of Cold Sprayed Powder Particle, Appl. Surf. Sci., 2012, 259, p 294-300. https://doi.org/10.1016/j.apsusc.2012.07.036

    Article  CAS  Google Scholar 

  12. M. Grujicic, C. Zhao, W. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688. https://doi.org/10.1016/j.matdes.2004.03.008

    Article  CAS  Google Scholar 

  13. Y. Ichikawa, R. Tokoro, M. Tanno, and K. Ogawa, Elucidation of Cold-Spray Deposition Mechanism by Auger Electron Spectroscopic Evaluation of Bonding Interface Oxide Film, Acta Mater., 2019, 164, p 39-49. https://doi.org/10.1016/j.actamat.2018.09.041

    Article  CAS  Google Scholar 

  14. W.-Y. Li and W. Gao, Some Aspects on 3D Numerical Modeling of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis, Appl. Surf. Sci., 2009, 255(18), p 7878-7892. https://doi.org/10.1016/j.apsusc.2009.04.135

    Article  CAS  Google Scholar 

  15. W.-Y. Li, C.-J. Li, and H. Liao, Significant Influence of Particle Surface Oxidation on Deposition Efficiency, Interface Microstructure and Adhesive Strength of Cold-Sprayed Copper Coatings, Appl. Surf. Sci., 2010, 256(16), p 4953-4958. https://doi.org/10.1016/j.apsusc.2010.03.008

    Article  CAS  Google Scholar 

  16. K. Balani, A. Agarwal, S. Seal, and J. Karthikeyan, Transmission Electron Microscopy of Cold Sprayed 1100 Aluminum Coating, Scr. Mater., 2005, 53(7), p 845-850. https://doi.org/10.1016/j.scriptamat.2005.06.008

    Article  CAS  Google Scholar 

  17. K. Kim, W. Li, and X. Guo, Detection of Oxygen at the Interface and Its Effect on Strain, Stress, and Temperature at the Interface Between Cold Sprayed Aluminum and Steel Substrate, Appl. Surf. Sci., 2015, 357(Part B), p 1720-1726. https://doi.org/10.1016/j.apsusc.2015.10.022

    Article  CAS  Google Scholar 

  18. W.-Y. Li, C. Zhang, H.-T. Wang, X. Guo, H. Liao, C.-J. Li, and C. Coddet, Significant Influences of Metal Reactivity and Oxide Films at Particle Surfaces on Coating Microstructure in Cold Spraying, Appl. Surf. Sci., 2007, 253(7), p 3557-3562. https://doi.org/10.1016/j.apsusc.2006.07.063

    Article  CAS  Google Scholar 

  19. C. Borchers, F. Gärtner, T. Stoltenhoff, H. Assadi, and H. Kreye, Microstructural and Macroscopic Properties of Cold Sprayed Copper Coatings, J. Appl. Phys., 2003, 93(12), p 10064-10070. https://doi.org/10.1016/j.apsusc.2006.07.063

    Article  CAS  Google Scholar 

  20. K. Kang, S. Yoon, Y. Ji, and C. Lee, Oxidation Dependency of Critical Velocity for Aluminum Feedstock Deposition in Kinetic Spraying Process, Mater. Sci. Eng. A, 2008, 486(1–2), p 300-307. https://doi.org/10.1016/j.msea.2007.09.010

    Article  CAS  Google Scholar 

  21. M. Yu, W. Li, X. Guo, and H. Liao, Impacting Behavior of Large Oxidized Copper Particles in Cold Spraying, J. Therm. Spray Technol., 2013, 22(2–3), p 433-440. https://doi.org/10.1007/s11666-012-9849-8

    Article  CAS  Google Scholar 

  22. W.-Y. Li, H. Liao, C.-J. Li, H.-S. Bang, and C. Coddet, Numerical Simulation If Deformation Behavior If Al Particles Impacting in Al Substrate and Effect of Surface Oxide Films on Interfacial Bonding in Cold Spraying, Appl. Surf. Sci., 2007, 253(11), p 5084-5091. https://doi.org/10.1016/j.apsusc.2006.11.020

    Article  CAS  Google Scholar 

  23. F.G.R. Hamid Assadi, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394. https://doi.org/10.1016/S1359-6454(03)00274-X

    Article  CAS  Google Scholar 

  24. H. Assadi, T. Schmidt, H. Richter, J.-O. Kliemann, K. Binder, F. Gärtner, T. Klassen, and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), p 1161-1176. https://doi.org/10.1007/s11666-011-9662-9

    Article  CAS  Google Scholar 

  25. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742. https://doi.org/10.1016/j.actamat.2005.10.005

    Article  CAS  Google Scholar 

  26. W. Wong, P. Vo, E. Irissou, A. Ryabinin, J.-G. Legoux, and S. Yue, Effect of Particle Morphology and Size Distribution on Cold-Sprayed Pure Titanium Coatings, J. Therm. Spray Technol., 2013, 22(7), p 1140-1153. https://doi.org/10.1007/s11666-013-9951-6

    Article  CAS  Google Scholar 

  27. H. Koivuluoto and P. Vuoristo, Effect of Powder Type and Composition on Structure and Mechanical Properties of Cu + Al2O3 Coatings Prepared by Using Low-Pressure Cold Spray Process, J. Therm. Spray Technol., 2010, 19(5), p 1081-1092. https://doi.org/10.1007/s11666-010-9491-2

    Article  CAS  Google Scholar 

  28. W. Wong, A. Rezaeian, E. Irissou, J.G. Legoux, S. Yue, Cold Spray Characteristics of Commercially Pure Ti and Ti-6Al-4V, Adv. Mater. Res., 2010, Trans Tech Publ, p 639-644.

  29. H. Fukanuma, N. Ohno, B. Sun, and R. Huang, In-Flight Particle Velocity Measurements with DPV-2000 in Cold Spray, Surf. Coat. Technol., 2006, 201(5), p 1935-1941. https://doi.org/10.1016/j.surfcoat.2006.04.035

    Article  CAS  Google Scholar 

  30. R. Fernandez and B. Jodoin, Effect of Particle Morphology on Cold Spray Deposition of Chromium Carbide-Nickel Chromium Cermet Powders, J. Therm. Spray Technol., 2017, 26(6), p 1356-1380. https://doi.org/10.1007/s11666-017-0580-3

    Article  CAS  Google Scholar 

  31. K. Ko, J. Choi, H. Lee, and B. Lee, Influence of Oxide Chemistry of Feedstock on Cold Sprayed Cu Coatings, Powder Technol., 2012, 218, p 119-123. https://doi.org/10.1016/j.powtec.2011.11.046

    Article  CAS  Google Scholar 

  32. C.-J. Li, W.-Y. Li, and H. Liao, Examination of the Critical Velocity for Deposition of Particles in Cold Spraying, J. Therm. Spray Technol., 2006, 15(2), p 212-222. https://doi.org/10.1361/105996306X108093

    Article  CAS  Google Scholar 

  33. C.-J. Li, H.-T. Wang, Q. Zhang, G.-J. Yang, W.-Y. Li, and H. Liao, Influence of Spray Materials and Their Surface Oxidation on the Critical Velocity in Cold Spraying, J. Therm. Spray Technol., 2010, 19(1–2), p 95-101. https://doi.org/10.1007/s11666-009-9427-x

    Article  CAS  Google Scholar 

  34. J. Villafuerte, Modern Cold Spray: Materials, Process, and Applications (2015)

  35. Y. Zhang, N. Brodusch, S. Descartes, J.M. Shockley, R. Gauvin, and R.R. Chromik, The Effect of Submicron Second-Phase Particles on the Rate of Grain Refinement in a Copper-Oxygen Alloy During Cold Spray, J. Therm. Spray Technol., 2017, 26(7), p 1509-1516. https://doi.org/10.1007/s11666-017-0603-0

    Article  CAS  Google Scholar 

  36. G. Borkow and J. Gabbay, Copper as a Biocidal Tool, Curr. Med. Chem., 2005, 12(18), p 2163-2175. https://doi.org/10.2174/0929867054637617

    Article  CAS  Google Scholar 

  37. G. Borkow and J. Gabbay, Putting Copper into Action: Copper-Impregnated Products with Potent Biocidal Activities, FASEB J., 2004, 18(14), p 1728-1730. https://doi.org/10.1096/fj.04-2029fje

    Article  CAS  Google Scholar 

  38. G. Borkow and J. Gabbay, Copper, an Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections, Curr. Chem. Biol., 2009, 3(3), p 272-278. https://doi.org/10.2174/187231309789054887

    Article  CAS  Google Scholar 

  39. C. Chen, Y. Xie, S. Yin, M.-P. Planche, S. Deng, R. Lupoi, and H. Liao, Evaluation of the Interfacial Bonding Between Particles and Substrate in Angular Cold Spray, Mater. Lett., 2016, 173, p 76-79. https://doi.org/10.1016/j.matlet.2016.03.036

    Article  CAS  Google Scholar 

  40. S. Choudhary, J. Sarma, S. Pande, S. Ababou-Girard, P. Turban, B. Lepine, and S. Gangopadhyay, Oxidation Mechanism of Thin Cu Films: A Gateway Towards the Formation of Single Oxide Phase, AIP Adv., 2018, 8(5), p 055114. https://doi.org/10.1063/1.5028407

    Article  CAS  Google Scholar 

  41. K. Binder, J. Gottschalk, M. Kollenda, F. Gärtner, and T. Klassen, Influence of Impact Angle and Gas Temperature on Mechanical Properties of Titanium Cold Spray Deposits, J. Therm. Spray Technol., 2011, 20(1–2), p 234-242. https://doi.org/10.1007/s11666-010-9557-1

    Article  CAS  Google Scholar 

  42. M.V. Vidaller, A. List, F. Gaertner, T. Klassen, S. Dosta, and J.M. Guilemany, Single Impact Bonding of Cold Sprayed Ti-6Al-4V Powders on Different Substrates, J. Therm. Spray Technol., 2014, 24, p 1-15. https://doi.org/10.1007/s11666-014-0200-4

    Article  CAS  Google Scholar 

  43. M.C. Biesinger, Advanced Analysis of Copper X-Ray Photoelectron Spectra, Surf. Interface Anal., 2017, 49(13), p 1325-1334. https://doi.org/10.1002/sia.6239

    Article  CAS  Google Scholar 

  44. M. Hassani-Gangaraj, D. Veysset, K.A. Nelson, and C.A. Schuh, Impact-Bonding with Aluminum, Silver, and Gold Microparticles: Toward Understanding the Role of Native Oxide Layer, Appl. Surf. Sci., 2019, 476, p 528-532. https://doi.org/10.1016/j.apsusc.2019.01.111

    Article  CAS  Google Scholar 

  45. Y. Ichikawa and K. Ogawa, Critical Deposition Condition of Conicraly Cold Spray Based on Particle Deformation Behavior, J. Therm. Spray Technol., 2017, 26(3), p 340-349. https://doi.org/10.1007/s11666-016-0477-6

    Article  CAS  Google Scholar 

  46. T. Liu, J.D. Leazer, and L.N. Brewer, Particle Deformation and Microstructure Evolution During Cold Spray of Individual Al-Cu Alloy Powder Particles, Acta Mater., 2019, 168, p 13-23. https://doi.org/10.1016/j.actamat.2019.01.054

    Article  CAS  Google Scholar 

  47. C.W. Ziemian, W.J. Wright, and D.E. Cipoletti, Influence of Impact Conditions on Feedstock Deposition Behavior of Cold-Sprayed Fe-Based Metallic Glass, J. Therm. Spray Technol., 2018, 27(5), p 843-856. https://doi.org/10.1007/s11666-018-0720-4

    Article  CAS  Google Scholar 

  48. P.C. King, S.H. Zahiri, and M. Jahedi, Microstructural Refinement within a Cold-Sprayed Copper Particle, Metall. Mater. Trans. A, 2009, 40(9), p 2115-2123. https://doi.org/10.1007/s11661-009-9882-5

    Article  CAS  Google Scholar 

  49. P.C. King, S. Zahiri, and M. Jahedi, Focused Ion Beam Micro-Dissection of Cold-Sprayed Particles, Acta Mater., 2008, 56(19), p 5617-5626. https://doi.org/10.1016/j.actamat.2008.07.034

    Article  CAS  Google Scholar 

  50. Y. Ichikawa and K. Ogawa, Effect of Substrate Surface Oxide Film Thickness on Deposition Behavior and Deposition Efficiency in The Cold Spray Process, J. Therm. Spray Technol., 2015, 24(7), p 1269-1276. https://doi.org/10.1007/s11666-015-0299-y

    Article  Google Scholar 

  51. K. Kim, M. Watanabe, K. Mitsuishi, K. Iakoubovskii, and S. Kuroda, Impact Bonding and Rebounding Between Kinetically Sprayed Titanium Particle and Steel Substrate Revealed by High-Resolution Electron Microscopy, J. Phys. D Appl. Phys., 2009, 42(6), p 065304. https://doi.org/10.1088/0022-3727/42/6/065304

    Article  CAS  Google Scholar 

  52. S. Rahmati and B. Jodoin, Physically Based Finite Element Modeling Method to Predict Metallic Bonding in Cold Spray, J. Therm. Spray Technol., 2020, 29, p 611-629. https://doi.org/10.1007/s11666-020-01000-1

    Article  CAS  Google Scholar 

  53. S. Rahmati and A. Ghaei, The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process, J. Therm. Spray Technol., 2014, 23(3), p 530-540. https://doi.org/10.1007/s11666-013-0051-4

    Article  CAS  Google Scholar 

  54. Y. Cormier, P. Dupuis, B. Jodoin, and A. Ghaei, Finite Element Analysis and Failure Mode Characterization of Pyramidal Fin Arrays Produced by Masked Cold Gas Dynamic Spray, J. Therm. Spray Technol., 2015, 24(8), p 1549-1565. https://doi.org/10.1007/s11666-015-0317-0

    Article  CAS  Google Scholar 

  55. Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Net Shape Fins for Compact Heat Exchanger Produced by Cold Spray, J. Therm. Spray Technol., 2013, 22(7), p 1210-1221. https://doi.org/10.1007/s11666-013-9968-x

    Article  CAS  Google Scholar 

  56. N. Bay, Mechanisms Producing Metallic Bonds in Cold Welding, Weld. J., 1983, 62(5), p 137-142

    Google Scholar 

  57. N. Bay, C. Clemensen, O. Juelstorp, and T. Wanheim, Bond Strength in Cold Roll Bonding, CIRP Ann., 1985, 34(1), p 221-224. https://doi.org/10.1016/S0007-8506(07)61760-0

    Article  Google Scholar 

  58. K. Khaledi, T. Brepols, and S. Reese, A Multiscale Description of Bond Formation in Cold Roll Bonding Considering Periodic Cracking of Thin Surface Films, Mech. Mater., 2019, 137, p 103142. https://doi.org/10.1016/j.mechmat.2019.103142

    Article  Google Scholar 

  59. S. Özbilen, Satellite Formation Mechanism in Gas Atomised Powders, Powder Metall., 1999, 42(1), p 70-78. https://doi.org/10.1179/pom.1999.42.1.70

    Article  Google Scholar 

  60. J.F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, Wiley, New York, 2019

    Book  Google Scholar 

  61. M.C. Biesinger, B.R. Hart, R. Polack, B.A. Kobe, and R.S.C. Smart, Analysis of Mineral Surface Chemistry in Flotation Separation Using Imaging XPS, Miner. Eng., 2007, 20(2), p 152-162. https://doi.org/10.1016/j.mineng.2006.08.006

    Article  CAS  Google Scholar 

  62. G. Deroubaix and P. Marcus, X-Ray Photoelectron Spectroscopy Analysis of Copper and Zinc Oxides and Sulphides, Surf. Interface Anal., 1992, 18(1), p 39-46. https://doi.org/10.1002/sia.740180107

    Article  CAS  Google Scholar 

  63. S. Saikova, S. Vorobyev, M. Likhatski, A. Romanchenko, S. Erenburg, S. Trubina, and Y. Mikhlin, X-Ray Photoelectron, Cu L3MM Auger and X-Ray Absorption Spectroscopic Studies of Cu Nanoparticles Produced in Aqueous Solutions: The Effect of Sample Preparation Techniques, Appl. Surf. Sci., 2012, 258(20), p 8214-8221. https://doi.org/10.1016/j.apsusc.2012.05.024

    Article  CAS  Google Scholar 

  64. B.R. Strohmeier, An ESCA Method for Determining the Oxide Thickness on Aluminum Alloys, Surf. Interface Anal., 1990, 15(1), p 51-56. https://doi.org/10.1002/sia.740150109

    Article  CAS  Google Scholar 

  65. J. Wu, H. Fang, S. Yoon, H. Kim, and C. Lee, Measurement of Particle Velocity and Characterization of Deposition in Aluminum Alloy Kinetic Spraying Process, Appl. Surf. Sci., 2005, 252(5), p 1368-1377

    Article  CAS  Google Scholar 

  66. F. Raletz, M. Vardelle, and G. Ezo’o, Critical Particle Velocity Under Cold Spray Conditions, Surf. Coat. Technol., 2006, 201(5), p 1942-1947. https://doi.org/10.1016/j.surfcoat.2006.04.061

    Article  CAS  Google Scholar 

  67. X. Song, J. Everaerts, W. Zhai, H. Zheng, A.W.Y. Tan, W. Sun, F. Li, I. Marinescu, E. Liu, and A.M. Korsunsky, Residual Stresses in Single Particle Splat of Metal Cold Spray Process-Numerical Simulation and Direct Measurement, Mater. Lett., 2018, 230, p 152-156. https://doi.org/10.1016/j.matlet.2018.07.117

    Article  CAS  Google Scholar 

  68. A. Tan, J. Lek, W. Sun, A. Bhowmik, I. Marinescu, X. Song, W. Zhai, F. Li, Z. Dong, and C. Boothroyd, Influence of Particle Velocity When Propelled Using N2 or N2-He Mixed Gas on the Properties of Cold-Sprayed Ti6Al4V Coatings, Coat, 2018, 8(9), p 327. https://doi.org/10.3390/coatings8090327

    Article  CAS  Google Scholar 

  69. W. Li, M. Yu, F. Wang, S. Yin, and H. Liao, A Generalized Critical Velocity Window Based on Material Property for Cold Spraying by Eulerian Method, J. Therm. Spray Technol., 2014, 23(3), p 557-566. https://doi.org/10.1007/s11666-013-0023-8

    Article  CAS  Google Scholar 

  70. J. Wu, H. Fang, S. Yoon, H. Kim, and C. Lee, The Rebound Phenomenon in Kinetic Spraying Deposition, Scr. Mater., 2006, 54(4), p 665-669. https://doi.org/10.1016/j.scriptamat.2005.10.028

    Article  CAS  Google Scholar 

  71. Z. Xianglin, W. Xiangkun, and W. Jianguo, Numerical Investigation of the Rebounding and the Deposition Behavior of Particles During Cold Spraying, Acta Metall. Sin. (Engl. Lett.), 2011, 24(1), p 43-53

    Google Scholar 

  72. A. Moridi, S.M. Hassani-Gangaraj, and M. Guagliano, A Hybrid Approach to Determine Critical and Erosion Velocities in The Cold Spray Process, Appl. Surf. Sci., 2013, 273, p 617-624. https://doi.org/10.1016/j.apsusc.2013.02.089

    Article  CAS  Google Scholar 

  73. W.-Y. Li, C. Zhang, C.-J. Li, and H. Liao, Modeling Aspects of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis, J. Therm. Spray Technol., 2009, 18(5), p 921. https://doi.org/10.1007/s11666-009-9325-2

    Article  CAS  Google Scholar 

  74. G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868. https://doi.org/10.1016/j.actamat.2008.06.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Razavipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavipour, M., Rahmati, S., Zúñiga, A. et al. Bonding Mechanisms in Cold Spray: Influence of Surface Oxidation During Powder Storage. J Therm Spray Tech 30, 304–323 (2021). https://doi.org/10.1007/s11666-020-01123-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01123-5

Keywords

Navigation