Skip to main content

Advertisement

Log in

Assessment of Rainfall–Runoff Due to the Impacts of Land-Use Changes by Integrated Geospatial Empirical Approach: Study on Koraiyar Basin, Tiruchirappalli City, India

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The changes that occur in various forms of land classes are known as land-use and land-cover changes (LULC). Such changes have a substantial impact on the contours of an urban basin and consequently have an effect on the surface runoff of the rainfall that occurs in the area. The runoff features obviously deteriorate because of the decrease in initial abstraction, and an increase in imperviousness causes enhanced runoff. The particular challenges in the urban basin are specificity calculation and quantification of surface runoff. Geospatial techniques are adopted along with the Soil Conservation Service-curve number (SCS-CN) technique to reliably predict and accurately measure runoff. The GIS is used to prepare the transformed layers of land classes from remotely sensed data. In this explorative study, LULC change and its impact on the urban Koraiyar basin, Tiruchirappalli city, South India, is studied by using SCS-CN with the aid of GIS techniques. As the basin that passes is located in a developing city, rapid changes in LULC are observed in and around the periphery of the basin. The LULC changes and their impact on surface runoff are analyzed using GIS with multi-dated Landsat satellite images for the years 1986–2016 at intervals of every 10 years. The supervised classification algorithm is used to develop LULC maps. From the study, it is observed that there is a continuous increase in settlement area of 1.04% from 1986 to 2016, especially in the northern part of the basin. A Markov model analysis is done from the historically developed LULC maps to predict the anticipated future LULC changes for the years 2026 and 2036 along with an estimation of the surface runoff. The predicted maps show that there is likely to be an increase in settlement area of 1.04% and decrease in 12.29% of agricultural land. The various thematic layers like slope, soil and curve number (CN) maps are also prepared using GIS. The composite CNs are generated for various land classes in the basin from 1986 to 2036. The increase in CN from 72 to 74.76 and their influence on runoff are studied. Finally, the study attempts to reliably estimate the present and future LULC status and its effect on surface runoff in the Koraiyar river basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdulkareem, J. H., Pradhan, B., Sulaiman, W. N. A., & Jamil, N. R. (2017). Prediction of spatial soil loss impacted by long-term land-use/land-cover change in a tropical watershed. Geoscience Frontiers, xxx, 1–15. https://doi.org/10.1016/j.gsf.2017.10.010.

    Article  Google Scholar 

  • Abdulkareem, J. H., Pradhan, B., Sulaiman, W. N. A., & Jamil, N. R. (2019a). Long-term runoff dynamics assessment measured through land use/cover (LULC) changes in a tropical complex catchment. Environment Systems and Decisions, 39, 16–33. https://doi.org/10.1007/s10669-018-9696-3.

    Article  Google Scholar 

  • Abdulkareem, J. H., Pradhan, B., Sulaiman, W. N. A., & Jamil, N. R. (2019b). Development of lag time and time of concentration for a tropical complex catchment under the influence of long-term land use/land cover (LULC) changes. Arabian Journal of Geosciences, 12, 101. https://doi.org/10.1007/s12517-019-4253-z.

    Article  Google Scholar 

  • Amini, A., Ali, T., Ghazali, A., Aziz, A., & Akib, S. (2011). Impacts of land-use change on streamflow in the Damansara Watershed, Malaysia. Arabian Journal of Science and Engineering, 36(5), 713–720.

    Article  Google Scholar 

  • Awadallah, A., ElGamal, M., ElMostafa, A., & ElBadry, H. (2011). Developing intensity–duration–frequency curves in scarce data region: An approach using regional analysis and satellite data. Engineering Science and Research, 3, 215–226.

    Google Scholar 

  • Behera, M. D., Borate, S. N., Panda, S. N., Behera, P. R., & Roy, P. S. (2012). Modelling and analyzing the watershed dynamics using Cellular Automata (CA)–Markov model—A geo-information based approach. Journal of Earth System Science, 121(4), 1011–1024.

    Article  Google Scholar 

  • Charlchai, T., Chalermchai, C. Y., Bennui, A., & Densreeserekul, O. (2004). Assessment of flood risk in Hat Yai Municipality, Southern Thailand, using GIS. Journal of Natural Disaster Science, 26(1), 1–14.

    Article  Google Scholar 

  • Chen, Y., Xu, Y., & Yin, Y. (2009). Impacts of land use change scenarios on storm-runoff generation in Xitiaoxi basin, China. Quaternary International, 208, 121–128.

    Article  Google Scholar 

  • Chow, V. T., Maidment, D. R., & Mays, L. W. (1998). Applied hydrology. Singapore: McGraw-Hill International Editions.

    Google Scholar 

  • Chowdhury, R., Alam, J. B., Das, P., & Alam, M. A. (2007). Short duration rainfall estimation of Sylhet: IMD and USWB method. Journal of Indian Water Works Association, 48, 285–292.

    Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classification of remotely sensed data. Remote Sensing of Environment, 37, 35–46. https://doi.org/10.1006/0034-4257(91)90048-B.

    Article  Google Scholar 

  • Coskun, G. H., Alganci, U., & Usta, G. (2008). Analysis of land use change and urbanization in the Kucukcekmece water basin (Istanbul, Turkey) with temporal satellite data using remote sensing and GIS. Sensors, 8, 7213–7223.

    Article  Google Scholar 

  • Dawod, G. M., Meraj, N. M., & Khalid, A.-G. (2011). GIS-based spatial mapping of flash flood hazard in Makkah City, Saudi Arabia. Journal of Geographic Information System, 3, 225–231. https://doi.org/10.4236/jgis.2011.33019.

    Article  Google Scholar 

  • Dongjie, G., Weijun, G., Kazuyuki, W., & Hidetoshi, F. (2008). Land use change of Kitakyushu based on landscape ecology and Markov model. Journal of Geographical Sciences, 18, 455–468. https://doi.org/10.1007/s11442-008-0455-0.

    Article  Google Scholar 

  • Radwan, F., Alazba, A. A., & Mossad, A. (2018). Estimating potential direct runoff for ungauged urban watersheds based on RST and GIS. Arabian Journal of Geosciences, 11, 748. https://doi.org/10.1007/s12517-018-4067-4.

    Article  Google Scholar 

  • Fox, D. M., Witz, E., Blanc, V., Soulie, C., Penalver, N. M., & Dervieux, A. (2012). A case study of land-cover change (1950–2003) and runoff in a Mediterranean catchment. Applied Geography, 32(2), 810–821. https://doi.org/10.1016/j.apgeog.2011.07.007.

    Article  Google Scholar 

  • Gebrselassie, H. (2014). Land use-land cover dynamics of Huluka watershed, Central Rift Valley; Ethiopia. International Soil and Water Conservation Research, 4(2), 25–33.

    Article  Google Scholar 

  • Hammond, M. J., Chen, A. S., Djordjevic, S., Butler, D., & Mark, O. (2013). Urban flood impact assessment: A state of the art review. Urban Water, 12(1), 14–29. https://doi.org/10.1080/1573062X.2013.857421.

    Article  Google Scholar 

  • Jianping, L. I., Bai, Z., & Feng, G. (2005). RS-and-GIS-supported forecast of grassland degradation in southwest Songnen plain by Markov model. Geo-spatial Information Science, 8, 104–106. https://doi.org/10.1007/BF02826848.

    Article  Google Scholar 

  • John, J., Chitra, N. R., & Thampi, S. G. (2019). Prediction of land use/cover change in the Bharathapuzha river basin, India using geospatial techniques. Environmental Monitoring and Assessment, 191, 354. https://doi.org/10.1007/s10661-019-7482-4.

    Article  Google Scholar 

  • Rajbanshi, J. (2016). Estimation of runoff depth and volume using NRCS-CN method in Konar Catchment (Jharkhand, India). Journal of Civil & Environmental Engineering, 6, 4. https://doi.org/10.4172/2165-784X.

    Article  Google Scholar 

  • Khare, D., Patra, D., & Mondal, A. (2017). Impact of land use/land cover change on runoff in the catchment of a hydropower project. Applied Water Science, 7, 787–800. https://doi.org/10.1007/s13201-015-0292-0.

    Article  Google Scholar 

  • Lillesand, T. M., & Kiefer, R. W. (2003). Remote sensing and image interpretation. New York: Wiley.

    Google Scholar 

  • Manthan, K., Shah, V. H., Pancholi, M., & Indraprakash, A. T. (2015). Estimation of runoff for Jamnagar district using SCS-CN method and geographic information systems. IJSRD - International Journal for Scientific Research & Development, 3(03), 110–120.

    Google Scholar 

  • Marwa Waseem, A., Halmy, P., & E.G., Jeffrey, A.H., Boshra, B.S. . (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101–112. https://doi.org/10.1016/j.apgeog.2015.06.015.

    Article  Google Scholar 

  • Melesse, A. M., Graham, W. D., & Jordan, J. D. (2003). Jordan spatially distributed watershed mapping and modeling: GIS-based storm runoff response and hydrograph analysis: Part 2. Journal of Spatial Hydrology, 3, 2–28.

    Google Scholar 

  • Mishra, S. K., Sahu, R. K., Eldho, T. I., & Jain, M. K. (2006). An improved Ia-S relation is incorporating antecedent moisture in SCS-CN methodology. Water Resource Management, 20(5), 643–660. https://doi.org/10.1007/s11269-005-9000-4.

    Article  Google Scholar 

  • Mishra, S. K., & Singh, V. P. (2004). Validity and extension of the SCS-CN method for computing infiltration and rainfall-excess rates. Hydrological Processes, 18(17), 3323–3345. https://doi.org/10.1002/hyp.1223.

    Article  Google Scholar 

  • Mishra, S. K., Singh, V. P., Sansalone, J. J., & Aravamuthan, V. (2003). A modified SCS-CN method: Characterization and testing. Water Resource Management, 17(1), 37–68. https://doi.org/10.1023/A:1023099005944.

    Article  Google Scholar 

  • Mistry, A., Lodha, P., Prakash, I., & Mehmood, K. (2017). Estimation of direct runoff for Purna river sub-basin, using SCS-CN method, Dangs District, Gujarat. International Journal of Advance Engineering and Research Development, 4, 581–659.

    Google Scholar 

  • Monserud, R. A. (1990). Methods for comparing global vegetation maps.

  • Mukherjee, F., & Singh, D. (2020). Assessing land use-land cover change and its impact on land surface temperature using LANDSAT data: A comparison of two urban areas in India. Earth Systems and Environment. https://doi.org/10.1007/s41748-020-00155-9.

    Article  Google Scholar 

  • Muller, R. M., & Middleton, J. (1994). A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Land Scape Ecology, 9(2), 151–157. https://doi.org/10.1007/BF00124382.

    Article  Google Scholar 

  • Nagarajan, N., & Poongothai, S. (2012). Spatial mapping of runoff from a watershed using SCS-CN method with remote sensing and GIS. Journal of Hydrologic Engineering, 17, 1268–1277. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000520.

    Article  Google Scholar 

  • NRSA. (2006). National land use and land cover mapping using multi-temporal AWiFS data. Andra Pradesh: Goverment of India.

    Google Scholar 

  • Ponce, V. M., & Hawkins, R. H. (1996). Runoff curve number: Has it reached maturity? Journal of Hydrologic Engineering, 1(1), 11–19. https://doi.org/10.1061/(ASCE)1084-0699.

    Article  Google Scholar 

  • Saghafian, B., Farazjoo, H., Bozorgy, B., & Yazdandoost, F. (2008). Flood intensification due to changes in land use. Water Resource Management, 22, 1051–1067. https://doi.org/10.1007/s11269-007-9210-z.

    Article  Google Scholar 

  • Shadeed, S., & Almasri, M. (2010). Application of GIS-based SCS-CN method in West Bank catchments, Palestine. Water Science and Engineering, 3(1), 1–13. https://doi.org/10.3882/j.issn.1674-2370.2010.01.001.

    Article  Google Scholar 

  • Satheeshkumar, S., Nisha, R., & Mathew, S. (2013). Land use change modelling using a Markov model and remote sensing. Geomatics, Natural Hazards and Risk. https://doi.org/10.1080/19475705.2013.795502.

    Article  Google Scholar 

  • Satheeshkumar, S., Venkateswaran, S., & Kannan, R. (2017). Rainfall-runoff estimation using SCS-CN and GIS approach in the Pappiredipatti watershed of the Vaniyar sub-basin, South India. Modeling Earth Systems and Environment, 3, 24. https://doi.org/10.1007/s40808-017-0301-4.

    Article  Google Scholar 

  • Sayal, J., Densmore, A. L., & Carboneau, P. (2014). Analyzing the effect of land-use/cover changes at sub-catchment levels on downstream flood peaks: A semi-distributed modeling approach with sparse data. CATENA, 118, 28–40. https://doi.org/10.1016/j.catena.2014.01.015.

    Article  Google Scholar 

  • Schulze, R. E., Schmidt, E. J., & Smithers, J. C. (1992). SCS-SA User Manual PC Based SCS design flood estimates for small catchments in Southern Africa, Pietermaritz burg. Department of Agricultural Engineering, University of Natal. ISBN1874897247 9781874897248.

  • Soil Conservation Service. (1971). National engineering handbook, Section 4: Hydrology. Springfield, VA: USDA.

    Google Scholar 

  • Soil Conservation Service. (1986). Urban Hydrology for Small Watersheds, Technical Report 55. USDA: Springfield, VA.

  • Shah, M., & Bhagat, N. (2017). Estimation of weighted SCS-CN: Case of Narmada river basin, India. International Journal of Science and Research, 5, 687–688.

    Google Scholar 

  • Shi, P. J., Yuan, Y., Zheng, J., Wang, J. A., Ge, Y., & Qiu, G. Y. (2007). The effect of land use/cover change on surface runoff in Shenzhen region, China. CATENA, 69(1), 31–35. https://doi.org/10.1016/j.catena.2006.04.015.

    Article  Google Scholar 

  • Shrestha, M. N. (2003). Spatially distributed hydrological modeling considering land-use changes using remote sensing and GIS Map Asia Conference.

  • Singh, S. K., Mustak, S. K., Srivastava, P. K., Szabo, S., & Islam, T. (2015). Predicting spatial and decadal LULC changes through cellular automata Markov Chain models using earth observation datasets and geo-information. Environment Process, 2, 61–78.

    Article  Google Scholar 

  • Stonestrom, D. A., Scanlon, B. R., & Zhang, L. (2009). Introduction to special section on impacts of land-use change on water resources. Water Resource Research, 45(7), 1–3. https://doi.org/10.1029/2009WR007937.

    Article  Google Scholar 

  • Suriya, S., & Mudgal, B. V. (2012). Impact of urbanization on flooding: The Thirusoolam sub watershed—A case study. Journal of Hydrology, 412, 210–219.

    Article  Google Scholar 

  • Suribabu, C. R., Bhaskar, J., & Neelakantan, T. R. (2012). Land use/cover change detection of Tiruchirapalli city, India using sintegrated remote sensing and GIS tools. Journal of the Indian Society of Remote Sensing, 40(4), 699–708.

    Article  Google Scholar 

  • Gitika, T., & Ranjan, S. (2014). Estimation of Surface Runoff using NRCS Curve number procedure in Buriganga Watershed, Assam, India, A Geospatial Approach. International Research Journal of Earth Sciences, 2(5), 1–7.

    Google Scholar 

  • Vaibhav, G., Khwanchanok, A., Gupta, P. K., Aggarwal, S. P., Kiriwongwattana, K., Thakur, P. K., & Nikam, B. R. (2012). Urbanisation effect on hydrological response: A case study of Asan river watershed, India. Journal of Environment and Earth Science, 2(9), 39–50.

    Google Scholar 

  • Vijia, R., Rajesh, P. P., & Ilangovan, R. (2015). Modified SCS-CN and Green-Ampt methods in surface runoff modelling for the Kundahpallam Watershed, Nilgiris, Western Ghats, India. Aquatic Procedia, 1, 677–684. https://doi.org/10.1016/j.aqpro.2015.02.087.

    Article  Google Scholar 

  • Vishvam, H. P., Pradeep, P. L., & Indra, P. (2015). Estimation of runoff and soil erosion for Vishwamitri river watershed, Western India using RS and GIS. American Journal of Water Science and Engineering, 1(2), 7–14. https://doi.org/10.11648/j.ajwse.20150102.11.

    Article  Google Scholar 

  • Wagner, P. D., Kumar, S., & Schneider, K. (2013). An assessment of land-use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrology and Earth System Sciences, 1, 2233–2246. https://doi.org/10.5194/hess-17-2233-2013.

    Article  Google Scholar 

  • Wang, G., & Weng, Q. (2013). Remote sensing of natural resources. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Weng, Q. (2002). Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. Journal of Environmental Management, 64, 273–284.

    Article  Google Scholar 

  • Yu, B. F. (1998). Theoretical justification of SCS method for runoff estimation. Journal of Irrigation and Drainage Engineering, 124(6), 306–310. https://doi.org/10.1061/(ASCE)07339437(1998)124:6(306).

    Article  Google Scholar 

  • Zhanga, R., Tangb, C., Mab, S., Yuana, H., Gaoa, L., & Fana, W. (2011). Using Markov chains to analyze changes in wetland trends in arid Yinchuan Plain China. Mathematical and Computer Modelling, 54, 924–930.

    Article  Google Scholar 

  • Zhan, X. Y., & Huang, M. L. (2004). Arc CN-Runoff: An ArcGIS tool for generating curve number and runoff maps. Environ Modell Softw, 19, 875–879. https://doi.org/10.1016/j.envsoft.2004.03.001.

    Article  Google Scholar 

  • Zhong, S. (2013). Proceedings of the 2012 International Conference on Cybernetics and Informatics (Vol 163). Berlin: Springer.

  • Zope, P. E., Eldho, T. I., & Jothiprakash, V. (2015). Impacts of urbanization on flooding of a coastal urban catchment a case study of Mumbai City, India. Natural Hazards, 75, 887–908.

    Article  Google Scholar 

  • Zope, P. E., Eldho, T. I., & Jothiprakash, V. (2016). Impacts of land use–land cover change and urbanization on flooding: A case study of Oshiwara River basin in Mumbai, India. CATENA, 145, 142–154. https://doi.org/10.1016/j.catena.2016.06.009.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to USGS Earth Explorer for readily providing Landsat images and to the State Ground and Surface Water Resources Data Centre and Water Resources Department, Chennai for providing the rainfall data needed for this research study. The authors are also grateful to all the editors and reviewers for the time and effort they spent on meticulously reviewing this scientific paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendar Natarajan.

Ethics declarations

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with the publication of this research paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 38 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natarajan, S., Radhakrishnan, N. Assessment of Rainfall–Runoff Due to the Impacts of Land-Use Changes by Integrated Geospatial Empirical Approach: Study on Koraiyar Basin, Tiruchirappalli City, India. J Indian Soc Remote Sens 49, 793–812 (2021). https://doi.org/10.1007/s12524-020-01260-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01260-y

Keywords

Navigation