Skip to main content
Log in

Distance from the Nucleus to a Uniformly Random Point in the 0-Cell and the Typical Cell of the Poisson–Voronoi Tessellation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Consider the distances \(\tilde{R}_o\) and \(R_o\) from the nucleus to a uniformly random point in the 0-cell and the typical cell, respectively, of the d-dimensional Poisson–Voronoi (PV) tessellation. The main objective of this paper is to characterize the exact distributions of \(\tilde{R}_o\) and \(R_o\). First, using the well-known relationship between the 0-cell and the typical cell, we show that the random variable \(\tilde{R}_o\) is equivalent in distribution to the contact distance of the Poisson point process. Next, we derive a multi-integral expression for the exact distribution of \(R_o\). Further, we derive a closed-form approximate expression for the distribution of \(R_o\), which is the contact distribution with a mean corrected by a factor equal to the ratio of the mean volumes of the 0-cell and the typical cell. An additional outcome of our analysis is a direct proof of the well-known spherical property of the PV cells having a large inball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Alternatively, RHS of (3) may be written using the Palm measure [11]. However, since we have already defined \(V_o\) in (2) by placing the typical point of \(\Phi \) at o, the Palm notation is not necessary here.

  2. The simultaneously growing sets of randomly distributed nuclei (realized through PPP) at equal isotropic rate are referred to as the PV transformation. These sets eventually transform into the PV cells.

  3. The surface area in this case is the Lebesgue measure in \(d-1\) dimensions.

References

  1. Møller, J.: Random tessellations in \(\mathbb{R}^d\). Adv. Appl. Probab. 21(1), 37–73 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Muche, L., Stoyan, D.: Contact and chord length distributions of the Poisson Voronoi tessellation. J. Appl. Probab. 29(2), 467–471 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calka, P.: The distributions of the smallest disks containing the Poisson-Voronoi typical cell and the Crofton cell in the plane. Adv. Appl. Probab. 34(4), 702–717 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calka, P.: An explicit expression for the distribution of the number of sides of the typical Poisson-Voronoi cell. Adv. Appl. Probab. 35(4), 863–870 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hug, D., Reitzner, M., Schneider, R.: Large Poisson–Voronoi cells and Crofton cells. Adv. Appl. Probab. 36(3), 667–690 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kumar, S., Kurtz, S.K., Banavar, J.R., Sharma, M.: Properties of a three-dimensional Poisson–Voronoi tesselation: A Monte Carlo study. J. Stat. Phys. 67(3–4), 523–551 (1992)

    Article  MATH  ADS  Google Scholar 

  7. Mecke, J.: On the relationship between the 0-cell and the typical cell of a stationary random tessellation. Pattern Recogn. 32(9), 1645–1648 (1999)

    Article  Google Scholar 

  8. Koufos, K., Dettmann, C.P.: Distribution of cell area in bounded Poisson Voronoi tessellations with application to secure local connectivity. J. Stat. Phys. 176, 1296–1315 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Jahnel, B., Tóbiás, A.: Exponential moments for planar tessellations. J. Stat. Phys. 179, 1–20 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pineda, E., Crespo, D.: Temporal evolution of the domain structure in a Poisson–Voronoi transformation. J. Stat. Mech. 2007(06), P06007 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baccelli, F., Blaszczyszyn, B.: Stochastic geometry and wireless networks: volume I theory. In: Foundations and Trends in Networking (2009)

  12. Andrews, J.G., Baccelli, F., Ganti, R.K.: A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 59(11), 3122–3134 (2011)

    Article  Google Scholar 

  13. Dhillon, H.S., Ganti, R.K., Baccelli, F., Andrews, J.G.: Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE J. Select. Areas Commun. 30(3), 550–560 (2012)

    Article  Google Scholar 

  14. Haenggi, M.: Stochastic Geometry for Wireless Networks. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  15. Blaszczyszyn, B., Haenggi, M., Keeler, P., Mukherjee, S.: Stochastic Geometry Analysis of Cellular Networks. Cambridge University Press, Cambridge (2018)

    Book  MATH  Google Scholar 

  16. Haenggi, M.: User point processes in cellular networks. IEEE Wirel. Commun. Lett. 6(2), 258–261 (2017)

    Article  Google Scholar 

  17. Mankar, P.D., Parida, P., Dhillon, H.S., Haenggi, M.: Downlink analysis for the typical cell in Poisson cellular networks. IEEE Wirel. Commun. Lett. 9(3), 336–339 (2020)

    Article  Google Scholar 

  18. Møller, J.: Lectures on Random Voronoi Tessellations. Springer, New York (2012)

    MATH  Google Scholar 

  19. Alishahi, K., Sharifitabar, M.: Volume degeneracy of the typical cell and the chord length distribution for Poisson-Voronoi tessellations in high dimensions. Adv. Appl. Probab. 40(4), 919–938, 12 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Robbins, H.E.: On the measure of a random set. Ann. Math. Stat. 15(1), 70–74 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pineda, E., Crespo, D.: Temporal evolution of the domain structure in a Poisson-Voronoi nucleation and growth transformation: Results for one and three dimensions. Phys. Rev. E 78(2), 021110 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  22. Wang, Y., Haenggi, M., Tan, Z.: The meta distribution of the SIR for cellular networks with power control. IEEE Trans. Commun. 66(4), 1745–1757 (2018)

    Article  Google Scholar 

  23. Olsbo, V.: On the correlation between the volumes of the typical Poisson Voronoi cell and the typical Stienen sphere. Adv. Appl. Probab. 39(4), 883–892 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, S.: Concise formulas for the area and volume of a hyperspherical cap. Asian J. Math. Stat. 4(1), 66–70 (2011)

    Article  MathSciNet  Google Scholar 

  25. Calka, P., Schreiber, T.: Limit theorems for the typical Poisson–Voronoi cell and the Crofton cell with a large inradius. Ann. Probab. 33(4), 1625–1642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Miles, R.E.: A heuristic proof of a long-standing conjecture of D. G. Kendall concerning the shapes of certain large random polygons. Adv. Appl. Probab. 27(2), 397–417 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States National Science Foundation under Grant ECCS-1731711.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harpreet S. Dhillon.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was performed when P. Mankar was with Wireless@VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA.

Solution of Integral in (41)

Solution of Integral in (41)

Let \(a=\frac{d-1}{2}\) and \(b=\frac{1}{2}\). From step (a) of (41) and using \(I_x(a,b)=\frac{B_x(a,b)}{B(a,b)}\), we have

$$\begin{aligned} p&=\nu _R\int _{R}^{R+\epsilon } B_{{1-\frac{l^2}{(R+\epsilon )^2}}}\left( a,b\right) l^{d-1}\mathrm{d}l, \end{aligned}$$

where \(\nu _R=\frac{{d((R+\epsilon )^d-R^d)^{-1}}}{2B\left( a,b\right) }\). We solve the above integral using integration by parts as follows. Let \(v=l^{d-1}\) and \(u=B_{1-\frac{l^2}{(R+\epsilon )^2}}\left( \frac{d-1}{2},\frac{1}{2}\right) \). We have

$$\frac{\mathrm{d}}{\mathrm{d}l}u=-\frac{2l}{(R+\epsilon )^2}\left( \frac{l^{2}}{(R+\epsilon )^{2)}}\right) ^{b-1}\left( 1-\frac{l^2}{(R+\epsilon )^2}\right) ^{a-1},$$

and thus

$$\begin{aligned} p&=-\nu _R\frac{R^d}{d}B_{1-\frac{R^2}{(R+\epsilon )^2}}\left( a,b\right) \\&\quad + \nu _R\int _R^{R+\epsilon } \frac{l^d}{d} \frac{2l}{(R+\epsilon )^2}\frac{l^{2(b-1)}}{(R+\epsilon )^{2(b-1)}}\left( 1-\frac{l^2}{(R+\epsilon )^2}\right) ^{a-1}\mathrm{d}l. \end{aligned}$$

Now, substituting \(\frac{l^2}{(R+\epsilon )^2}=z\), we get

$$\begin{aligned} p&=-\nu _R\frac{R^d}{d}B_{1-\frac{R^2}{(R+\epsilon )^2}}\left( a,b\right) +\nu _R\frac{(R+\epsilon )^d}{d}\int _\frac{R^2}{(R+\epsilon )^2}^1z^{b+\frac{d}{2}-1}(1-z)^{a-1}\mathrm{d}z\\&=-\nu _R\frac{R^d}{d}B_{1-\frac{R^2}{(R+\epsilon )^2}}\left( a,b\right) + \nu _R\frac{(R+\epsilon )^d}{d}\left[ B\left( b+\frac{d}{2}-1,a\right) - B_{\frac{R^2}{(R+\epsilon )^2}}\left( b+\frac{d}{2}-1,a\right) \right] \\&=-\tilde{\nu }_R R^d I_{1-\frac{R^2}{(R+\epsilon )^2}}(a,b) +\tilde{\nu }_R(R+\epsilon )^d\frac{B\left( b+\frac{d}{2},a\right) }{B(a,b)}\left[ 1-I_{1-\frac{R^2}{(R+\epsilon )^2}}\left( b+\frac{d}{2},a\right) \right] \\&{\mathop {=}\limits ^{(a)}}\tilde{\nu }_R(R+\epsilon )^d B_{1-\frac{R^2}{(R+\epsilon )^2}}\left( a,b+\frac{d}{2}\right) -\tilde{\nu }_R R^d I_{1-\frac{R^2}{(R+\epsilon )^2}}(a,b) \end{aligned}$$

where \(\tilde{\nu }_R=\frac{1}{2((R+\epsilon )^d-R^d)}\). Step (a) follows using \(I_{x}(a,b)=1-I_{1-x}(b,a)\) and \(B(a,b)=B(b,a)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mankar, P.D., Parida, P., Dhillon, H.S. et al. Distance from the Nucleus to a Uniformly Random Point in the 0-Cell and the Typical Cell of the Poisson–Voronoi Tessellation. J Stat Phys 181, 1678–1698 (2020). https://doi.org/10.1007/s10955-020-02641-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02641-w

Keywords

Navigation