Skip to main content
Log in

Eigenvalues Outside the Bulk of Inhomogeneous Erdős–Rényi Random Graphs

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

A Correction to this article was published on 01 April 2024

This article has been updated

Abstract

In this article, an inhomogeneous Erdős–Rényi random graph on \(\{1,\ldots , N\}\) is considered, where an edge is placed between vertices i and j with probability \(\varepsilon _N f(i/N,j/N)\), for \(i\le j\), the choice being made independently for each pair. The integral operator \(I_f\) associated with the bounded function f is assumed to be symmetric, non-negative definite, and of finite rank k. We study the edge of the spectrum of the adjacency matrix of such an inhomogeneous Erdős–Rényi random graph under the assumption that \(N\varepsilon _N\rightarrow \infty \) sufficiently fast. Although the bulk of the spectrum of the adjacency matrix, scaled by \(\sqrt{N\varepsilon _N}\), is compactly supported, the kth largest eigenvalue goes to infinity. It turns out that the largest eigenvalue after appropriate scaling and centering converges to a Gaussian law, if the largest eigenvalue of \(I_f\) has multiplicity 1. If \(I_f\) has k distinct non-zero eigenvalues, then the joint distribution of the k largest eigenvalues converge jointly to a multivariate Gaussian law. The first order behaviour of the eigenvectors is derived as a byproduct of the above results. The results complement the homogeneous case derived by [18].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Alt, J., Ducatez, R., Knowles, A.: Delocalization transition for critical Erdős–Rényi graphs. ArXiv:2005.14180 (2020)

  2. Baik, J., Silverstein, J.W.: Eigenvalues of large sample covariance matrices of spiked population models. J. Multivar. Anal. 97(6), 1382–1408 (2006). https://doi.org/10.1016/j.jmva.2005.08.003

    Article  MathSciNet  Google Scholar 

  3. Baik, J., Ben Arous, G., Péché, S.: Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33(5), 1643–1697 (2005). https://doi.org/10.1214/009117905000000233

    Article  MathSciNet  Google Scholar 

  4. Benaych-Georges, F., Nadakuditi, R.R.: The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math. 227(1), 494–521 (2011). https://doi.org/10.1016/j.aim.2011.02.007

    Article  MathSciNet  Google Scholar 

  5. Benaych-Georges, F., Guionnet, A., Maida, M.: Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices. Electron. J. Probab. 16, 1621–1662 (2011)

    Article  MathSciNet  Google Scholar 

  6. Benaych-Georges, F., Bordenave, C., Knowles, A.: Largest eigenvalues of sparse inhomogeneous Erdős–Rényi graphs. Ann. Probab. 47(3), 1653–1676 (2019)

    Article  MathSciNet  Google Scholar 

  7. Benaych-Georges, F., Bordenave, C., Knowles, A.: Spectral radii of sparse random matrices. Ann. Inst. H. Poincaré Probab. Statist. 56(3), 2141–2161 (2020). https://doi.org/10.1214/19-AIHP1033

    Article  MathSciNet  Google Scholar 

  8. Bhamidi, S., Van Der Hofstad, R., van Leeuwaarden, J., et al.: Scaling limits for critical inhomogeneous random graphs with finite third moments. Electron. J. Probab. 15, 1682–1702 (2010)

    Article  MathSciNet  Google Scholar 

  9. Bollobás, B., Janson, S., Riordan, O.: The phase transition in inhomogeneous random graphs. Random Struct. Algorithms 31(1), 3–122 (2007)

    Article  MathSciNet  Google Scholar 

  10. Capitaine, M., Péché, S.: Fluctuations at the edges of the spectrum of the full rank deformed GUE. Probab. Theory Relat. Fields 165(1–2), 117–161 (2016). https://doi.org/10.1007/s00440-015-0628-6

    Article  MathSciNet  Google Scholar 

  11. Capitaine, M., Donati-Martin, C., Féral, D., et al.: The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations. Ann. Probab. 37(1), 1–47 (2009)

    Article  MathSciNet  Google Scholar 

  12. Capitaine, M., Donati-Martin, C., Féral, D.: Central limit theorems for eigenvalues of deformations of Wigner matrices. Ann. Probab. Stat. 48(1), 107–133 (2012)

    MathSciNet  Google Scholar 

  13. Chakrabarty, A., Hazra, R.S., den Hollander, F., Sfragara, M.: Spectra of adjacency and Laplacian matrices of inhomogeneous Erdős–Rényi random graphs. To appear in Random Matrices: Theory and Applications (2019). https://doi.org/10.1142/S201032632150009X

  14. Chapon, F., Couillet, R., Hachem, W., Mestre, X.: The outliers among the singular values of large rectangular random matrices with additive fixed rank deformation. Markov Process. Relat. Fields 20(2), 183–228 (2014)

    MathSciNet  Google Scholar 

  15. Couillet, R., Hachem, W.: Fluctuations of spiked random matrix models and failure diagnosis in sensor networks. IEEE Trans. Inform. Theory 59(1), 509–525 (2013). https://doi.org/10.1109/TIT.2012.2218572

    Article  MathSciNet  Google Scholar 

  16. Ding, X., Jiang, T., et al.: Spectral distributions of adjacency and Laplacian matrices of random graphs. Ann. Appl. Probab. 20(6), 2086–2117 (2010)

    Article  MathSciNet  Google Scholar 

  17. Erdős, L., Knowles, A., Yau, H.-T., Yin, J.: Spectral statistics of Erdős–Rényi graphs II: eigenvalue spacing and the extreme eigenvalues. Commun. Math. Phys. 314(3), 587–640 (2012). https://doi.org/10.1007/s00220-012-1527-7

    Article  ADS  Google Scholar 

  18. Erdős, L., Knowles, A., Yau, H.-T., Yin, J.: Spectral statistics of Erdős–Rényi graphs I: local semicircle law. Ann. Probab. 41(3B), 2279–2375 (2013). https://doi.org/10.1214/11-AOP734

    Article  MathSciNet  Google Scholar 

  19. Féral, D., Péché, S.: The largest eigenvalue of rank one deformation of large Wigner matrices. Commun. Math. Phys. 272(1), 185–228 (2007). https://doi.org/10.1007/s00220-007-0209-3

    Article  ADS  MathSciNet  Google Scholar 

  20. Füredi, Z., Komlós, J.: The eigenvalues of random symmetric matrices. Combinatorica 1(3), 233–241 (1981). https://doi.org/10.1007/BF02579329

    Article  MathSciNet  Google Scholar 

  21. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

    Article  MathSciNet  Google Scholar 

  22. Huang, J., Landon, B., Yau, H.-T.: Transition from Tracy–Widom to Gaussian fluctuations of extremal eigenvalues of sparse Erdős—Rényi graphs. Ann. Probab. 48(2), 916–962 (2020). https://doi.org/10.1214/19-AOP1378

    Article  MathSciNet  Google Scholar 

  23. Johansson, K.: From Gumbel to Tracy–Widom. Probab. Theory Relat. Fields 138(1–2), 75–112 (2007). https://doi.org/10.1007/s00440-006-0012-7

    Article  MathSciNet  Google Scholar 

  24. Knowles, A., Yin, J.: The isotropic semicircle law and deformation of Wigner matrices. Commun. Pure Appl. Math. 66(11), 1663–1750 (2013). https://doi.org/10.1002/cpa.21450

    Article  MathSciNet  Google Scholar 

  25. Knowles, A., Yin, J.: The outliers of a deformed Wigner matrix. Ann. Probab. 42(5), 1980–2031 (2014). https://doi.org/10.1214/13-AOP855

    Article  MathSciNet  Google Scholar 

  26. Lee, J.O., Schnelli, K.: Extremal eigenvalues and eigenvectors of deformed Wigner matrices. Probab. Theory Relat. Fields 164(1–2), 165–241 (2016). https://doi.org/10.1007/s00440-014-0610-8

    Article  MathSciNet  Google Scholar 

  27. Lee, J.O., Schnelli, K.: Local law and Tracy–Widom limit for sparse random matrices. Probab. Theory Relat. Fields 171(1–2), 543–616 (2018)

    Article  MathSciNet  Google Scholar 

  28. Ninio, F.: A simple proof of the Perron–Frobenius theorem for positive symmetric matrices. J. Phys. A Math. Gen. 9(8), 1281 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  29. Péché, S.: Deformed ensembles of random matrices. In: Proceedings of the International Congress of Mathematicians—Seoul 2014, vol. III. pp. 1159–1174. Kyung Moon SA, Seoul (2014).

  30. Tiomoko Ali, H., Couillet, R.: Improved spectral community detection in large heterogeneous networks. J. Mach. Learn. Res. 18, Paper No. 225, 49 (2017)

  31. Tran, L.V., Vu, V.H., Wang, K.: Sparse random graphs: eigenvalues and eigenvectors. Random Struct. Algorithms 42(1), 110–134 (2013). https://doi.org/10.1002/rsa.20406

    Article  MathSciNet  Google Scholar 

  32. van der Hofstad, R.: Critical behavior in inhomogeneous random graphs. Random Struct. Algorithms 42(4), 480–508 (2013)

    Article  MathSciNet  Google Scholar 

  33. Varga, R.S.: Geršgorin and His Circles. Springer Series in Computational Mathematics, vol. 36. Springer, Berlin (2004). https://doi.org/10.1007/978-3-642-17798-9

  34. Vu, V.H.: Spectral norm of random matrices. Combinatorica 27(6), 721–736 (2007). https://doi.org/10.1007/s00493-007-2190-z

    Article  MathSciNet  Google Scholar 

  35. Zhu, Y.: Graphon approach to limiting spectral distributions of Wigner-type matrices. arXiv.1806.11246 (2018)

Download references

Acknowledgements

The authors thank an anonymous referee for insightful comments that helped improve the paper significantly. RSH thanks Kavita Ramanan for a fruitful discussion. The research of AC and RSH was supported by the MATRICS grant of SERB. SC thanks Matteo Sfragara for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Subhra Hazra.

Additional information

Communicated by Abhishek Dhar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 6.1

The eigenfunctions \(\{r_i:1\le i\le k\}\) of the operator \(I_f\) are Riemann integrable.

Proof

Let \(D_f\subset [0,1]\times [0,1]\) be the set of discontinuity points f. Since f is Riemann integrable, the Lebesgue measure of \(D_f\) is 0. Let

$$\begin{aligned} D_f^x=\{y\in [0,\,1]:\, (x,y)\in D_f\}, \, x\in [0,\,1]. \end{aligned}$$

If \(\lambda \) is the one dimensional Lebesgue measure, then Fubini’s theorem implies that

$$\begin{aligned} E=\{ x\in [0,1]: \lambda (D_f^x)=0\} \end{aligned}$$

has full measure. Fix an \(x\in E\) and consider \(x_n\rightarrow x\) and observe that

$$\begin{aligned} f(x_n,y)\rightarrow f(x,y) \quad \text {for all}{ y\notin D_f^x}. \end{aligned}$$

Fix \(1\le i\le k\) and let \(\theta _i\) be the eigenvalue with corresponding eigenfunction \(r_i\), that is,

$$\begin{aligned} r_i(x)= \frac{1}{\theta _i}\int _0^1 f(x,y) r_i(y) \, dy. \end{aligned}$$
(6.1)

Using f is bounded and \(r\in L^2[0,1]\), dominated convergence theorem implies

$$\begin{aligned} r_i(x_n)= \frac{1}{\theta _i}\int _{(D_f^x)^c} f(x_n,y) r_i(y)\, dy\rightarrow \frac{1}{\theta _i}\int _0^1 f(x,y) r_i(y)\, dy=r_i(x) \end{aligned}$$

and hence r is continuous at x. So the discontinuity points of \(r_i\) form a subset of \(E^c\) which has Lebesgue measure 0. Further, (6.1) shows that \(r_i\) is bounded and hence Riemann integrability follows. \(\square \)

The following result is a version of the Perron–Frobenius theorem in the infinite dimensional setting (also known as the Krein–Rutman theorem). Since our integral operator is positive, self-adjoint and finite dimensional so the proof in this setting is much simpler and can be derived following the work of [28]. In what follows, we use for \(f, g\in L^2[0,1]\), the inner product

$$\begin{aligned} \langle f, \, g\rangle =\int _0^1 f(x)g(x)dx. \end{aligned}$$

Lemma 6.2

Suppose \(f>0\) a.e. on \([0,1]\times [0,1]\). Then largest eigenvalue \(\theta _1\) of \(T_f\) is positive and the corresponding eigenfunction \(r_1\) can be chosen such that \(r_1(x)>0\) for almost every \(x\in [0,1]\). Further, \(\theta _1>\theta _2\).

Proof

First observe that

$$\begin{aligned} 0<\theta _1= \langle r_1,\, \theta _1 r_1\rangle&= \langle r_1, \, I_f(r_1)\rangle = | \langle r_1, \, I_f(r_1)\rangle |\\&\le \langle u_1, I_f(u_1)\rangle \le \theta _1 \end{aligned}$$

where \(u_1(x)=|r_1|(x)\) and the last inequality follows from the Rayleigh-Ritz formulation of the largest eigenvalue. Hence note that the string of inequalities is actually an equality, that is,

$$\begin{aligned} \langle r_1, \, I_f(r_1) \rangle = \langle u_1, I_f(u_1)\rangle . \end{aligned}$$

Breaking \(r_1= r_1^{+}-r_1^{-}\) implies either \(r_1^+=0\) or \(r_1^{-}=0\) almost everywhere. Without loss of generality assume that \(r_1\ge 0\) almost everywhere. Using

$$\begin{aligned} \theta _1 r_1(x)= \int _0^1 f(x,y) r_1(y)\, dy \end{aligned}$$

Note that if \(r_1(x)\) is zero for some x then due to the positivity assumption on f, \(r_1(y)=0\) for almost every \(y\in [0,1]\) which is a contradiction. Hence we have that \(r_1(x)>0\) almost every \(x\in [0, 1]\).

For the final claim, without loss of generality assume that \(\int _0^1 r_1(x)\, dx\ge 0\). If \(\theta _1=\theta _2\), then the previous argument would give us \(r_2(x)>0\) and this will contradict the orthogonality of \(r_1\) and \(r_2\). \(\square \)

Lemmas 4.14.4 are proved in the rest of this section. Therefore, the notations used here should refer to those in Sect. 4 and should not be confused with those in Sect. 5. For example, \(e_1\) and \(e_2\) are as in Lemma 4.2.

Proof of Lemma 4.1

Note that for any even integer k

$$\begin{aligned} \mathrm{E}(\Vert W\Vert ^k) \le \mathrm{E}({{\,\mathrm{Tr}\,}}(W^k)). \end{aligned}$$
(6.2)

Using \(\mathrm{E}(W(i,j)^2)\le \varepsilon M\) and condition (1.2) it is immediate that conditions of Theorem 1.4 of [34] are satisfied. We shall use the following estimate from the proof of that result. It follows from [34, Sect. 4]

$$\begin{aligned} \mathrm{E}({{\,\mathrm{Tr}\,}}(W^k)) \le K_1N (2\sqrt{\varepsilon MN})^k \end{aligned}$$
(6.3)

where \(K_1\) is some positive constant and there exists a constant \(a>0\) such that k can be chosen as

$$\begin{aligned} k = \sqrt{2} a (\varepsilon M)^{1/4} N^{1/4}. \end{aligned}$$

Using (6.2), (6.3) and \((1-x)^k \le e^{-kx}\) for k, \(x > 0\),

$$\begin{aligned}&P \left( \Vert W \Vert \ge 2 \sqrt{MN\varepsilon } + C_1 (N \varepsilon )^{1/4} ( \log N)^{\xi /4}\right) \nonumber \\&= K_1 N \left( 1 - \frac{C_1 (N \varepsilon )^{1/4} ( \log N)^{\xi /4}}{ 2 \sqrt{MN\varepsilon } + C_1 (N \varepsilon )^{1/4} ( \log N)^{\xi /4}} \right) ^k\nonumber \\&\le K_1 N \exp \left( -\frac{k C_1 (N \varepsilon )^{1/4} ( \log N)^{\xi /4}}{ 2 \sqrt{MN\varepsilon } + C_1 (N \varepsilon )^{1/4} ( \log N)^{\xi /4}} \right) . \end{aligned}$$
(6.4)

Now plugging in the value of k in the bound (6.4) and using

$$\begin{aligned} 2 \sqrt{M} + C_1 (N \varepsilon )^{-1/4} ( \log N)^{\xi /4} \le 2 \sqrt{M} +C_1 \end{aligned}$$

we have

$$\begin{aligned} (6.4) \le K_1 N \exp \left( -\frac{C_1 a M^{1/4}\sqrt{2} ( \log N)^{\xi /4}}{ 2 \sqrt{M} + C_1} \right) \le e^{-C_2 (\log N )^{\xi /4}} \end{aligned}$$

for some constant \(C_2>0\) and N large enough. This proves (4.1) and hence the lemma.

\(\square \)

Proof of Lemma 4.2

Let A be the event where Lemma 4.1 holds, that is, \(\Vert W\Vert \le C \sqrt{N\varepsilon }\) for some constant C. Since the entries of \(e_1\) and \(e_2\) are in \([-1/\sqrt{N}, 1/\sqrt{N}]\) so \(\Vert e_i\Vert \le 1\) for \(i=1,2\). Hence on the high probability event it holds that

$$\begin{aligned} \left| \mathrm{E}\left( e_1^\prime W^ne_2 \mathbf{1} _{A}\right) \right| \le (CN\varepsilon )^{n/2}. \end{aligned}$$

We show that the above expectation on the low probability event \(A^c\) is negligible. For that first observe

$$\begin{aligned} |\mathrm{E}[(e_1^\prime W^n e_2)^2]|\le N^{nC^\prime } \end{aligned}$$

for some constant \(0<C^\prime <\infty \). Thus using Lemma 4.1 one has

$$\begin{aligned} \left| \mathrm{E}\left( e_1^\prime W^ne_2 \mathbf{1} _{A^c}\right) \right|&\le \left| \mathrm{E}\left[ (e_1^\prime W^ne_2)^2\right] ^{1/2}\right| P(A_N^c)^{1/2} \\&\le \exp \left( nC^{\prime }\log N- 2^{-1}C_2 (\log N)^{\xi /4}\right) \end{aligned}$$

Since \(n\le \log N\) and \(\xi >8\) the result follows. \(\square \)

Proof of Lemma 4.3

The proof is similar to the proof of Lemma 6.5 of [18]. The exponent in the exponential decay is crucial, so the proof is briefly sketched. Observe that

$$\begin{aligned}&e_1^\prime W^ne_2-\mathrm{E}\left( e_1^\prime W^ne_2\right) \nonumber \\&\quad =\sum _{i\in \{1,\ldots , N\}^{n+1}}e_1(i_1)e_2(i_{n+1}) \left( \prod _{l=1}^{n}W(i_l, i_{l+1})-\mathrm{E}\left[ \prod _{l=1}^{n}W(i_l, i_{l+1})\right] \right) \end{aligned}$$
(6.5)

To use the independence, one can split the matrix W as \(W^{\prime } + W^{{\prime \prime }}\) where the upper triangular matrix \(W^{\prime }\) has entries \(W^{\prime }(i,j) = W(i,j) \mathbf{1} (i\leqslant j)\) and the lower triangular matrix \(W^{{\prime \prime }}\) with entries \(W^{{\prime \prime }}(i,j) = W(i,j) \mathbf{1} (i > j)\). Therefore the above quantity under the sum breaks into \(2^n\) terms each having similar properties. Denote one such term as

$$\begin{aligned} L_n= \sum _{i\in \{1,\ldots , N\}^{n+1}}e_1(i_1)e_2(i_{n+1}) \left( \prod _{l=1}^{n}W^\prime (i_l, i_{l+1})-\mathrm{E}\left[ \prod _{l=1}^{n}W^\prime (i_l, i_{l+1})\right] \right) . \end{aligned}$$

Using the fact that each entry of \(e_1\) and \(e_2\) are bounded by \(1/\sqrt{N}\), it follows by imitating the proof of Lemma 6.5 of [18] that

$$\begin{aligned} \mathrm{E}[|L_n|^p] \le \frac{\left( Cnp\right) ^{np}(N\varepsilon )^{np/2}}{N^{p/2}}, \end{aligned}$$

where p is an even integer and C is a positive constant, independent of n and p. Rest of the \(2^n-1\) terms arising in (6.5) have the same bound and hence

$$\begin{aligned}&P\left( \left| e_1^\prime W^ne_2-\mathrm{E}\left( e_1^\prime W^ne_2\right) \right| >N^{(n-1)/2}\varepsilon ^{n/2}(\log N)^{n\xi /4}\right) \\&\le \frac{\left( 2Cnp\right) ^{np}(N\varepsilon )^{np/2}}{N^{p/2}N^{p(n-1)/2}\varepsilon ^{pn/2}(\log N)^{pn\xi /4}}= \frac{\left( 2Cnp\right) ^{np}}{(\log N)^{pn\xi /4}}. \end{aligned}$$

Choose \(\eta \in (1,\, \xi /4)\) and consider

$$\begin{aligned} p=\frac{(\log N)^{\eta }}{2Cn}, \end{aligned}$$

(with N large enough to make p an even integer) to get

$$\begin{aligned}&P\left( \left| e_1^\prime W^ne_2-\mathrm{E}\left( e_1^\prime W^ne_2\right) \right| >N^{(n-1)/2}\varepsilon ^{n/2}(\log N)^{n\xi /4}\right) \\&\le \exp \left( -\frac{1}{2C}(\log N)^{\eta }(\frac{\xi }{4}-\eta )\log \log N\right) . \end{aligned}$$

Note that \(n\le L\), ensures that \(p>1\). Since the bound is uniform over all \(2\le n\le L\), the first bound (4.2) follows.

For (4.3) one can use Hoeffding’s inequality [21, Theorem 2] as follows.

Define

$$\begin{aligned} {\widetilde{A}}(k,l)= A(k,l) e_1(k)e_2(l), \,\,\, 1\le k\le l\le N. \end{aligned}$$

Since A(kl) are Bernoulli random variables, so one has \(\{{\widetilde{A}}(k,l): 1\le k\le l\le N\}\) are independent random variables taking values in \([-1/N, 1/N]\) and hence by Hoeffding’s inequality we have, for any \(\delta >0\),

$$\begin{aligned}&P\left( \left| \sum _{1\le k\le l\le N} {\widetilde{A}}(k,l)- E\left( \sum _{1\le k\le l\le N} {\widetilde{A}}(k,l)\right) \right| >\delta N\varepsilon \right) \\&\le 2\exp \left( -\delta ^2(N\varepsilon )^2\right) \le 2 \exp \left( -\delta ^2 (\log N)^{2\xi }\right) . \end{aligned}$$

Dealing with the case \(k>l\) similarly, the desired bound on\(e_1^\prime We_2\) follows. \(\square \)

Proof of Lemma 4.4

Follows by a simple moment calculation. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarty, A., Chakraborty, S. & Hazra, R.S. Eigenvalues Outside the Bulk of Inhomogeneous Erdős–Rényi Random Graphs. J Stat Phys 181, 1746–1780 (2020). https://doi.org/10.1007/s10955-020-02644-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02644-7

Keywords

Mathematics Subject Classification

Navigation