Skip to main content
Log in

The Asymptotics of the Clustering Transition for Random Constraint Satisfaction Problems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Random constraint satisfaction problems exhibit several phase transitions when their density of constraints is varied. One of these threshold phenomena, known as the clustering or dynamic transition, corresponds to a transition for an information theoretic problem called tree reconstruction. In this article we study this threshold for two CSPs, namely the bicoloring of k-uniform hypergraphs with a density \(\alpha \) of constraints, and the q-coloring of random graphs with average degree c. We show that in the large kq limit the clustering transition occurs for \(\alpha = \frac{2^{k-1}}{k} (\ln k + \ln \ln k + \gamma _{\mathrm{d}} + o(1))\), \(c= q (\ln q + \ln \ln q + \gamma _{\mathrm{d}}+ o(1))\), where \(\gamma _{\mathrm{d}}\) is the same constant for both models. We characterize \(\gamma _{\mathrm{d}}\) via a functional equation, solve the latter numerically to estimate \(\gamma _{\mathrm{d}} \approx 0.871\), and obtain an analytic lowerbound \(\gamma _{\mathrm{d}} \ge 1 + \ln (2 (\sqrt{2}-1)) \approx 0.812\). Our analysis unveils a subtle interplay of the clustering transition with the rigidity (naive reconstruction) threshold that occurs on the same asymptotic scale at \(\gamma _{\mathrm{r}}=1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abou-Chacra, R., Thouless, D.J., Anderson, P.W.: A selfconsistent theory of localization. J. Phys. C 6(10), 1734 (1973). https://doi.org/10.1088/0022-3719/6/10/009. http://stacks.iop.org/0022-3719/6/i=10/a=009

  2. Achlioptas, D., Coja-Oghlan, A.: Algorithmic barriers from phase transitions. In: Proceedings of FOCS 2008, p. 793 (2008). https://doi.org/10.1109/FOCS.2008.11

  3. Achlioptas, D., Ricci-Tersenghi, F.: On the solution-space geometry of random constraint satisfaction problems. In: Proc. of 38th STOC, pp. 130–139. ACM, New York (2006). https://doi.org/10.1145/1132516.1132537

  4. Asmussen, S., Rosinski, J.: Approximations of small jumps of lévy processes with a view towards simulation. J. Appl. Probab. 38(2), 482–493 (2001). https://doi.org/10.1239/jap/996986757

    Article  MathSciNet  MATH  Google Scholar 

  5. Barbier, J., Krzakala, F., Zdeborová, L., Zhang, P.: The hard-core model on random graphs revisited. J. Phys. 473, 012021 (2013). https://doi.org/10.1088/1742-6596/473/1/012021

    Article  Google Scholar 

  6. Bhatnagar, N., Sly, A., Tetali, P.: Reconstruction threshold for the hardcore model. In: M. Serna, R. Shaltiel, K. Jansen, J. Rolim (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp. 434–447 (2010)

  7. Biroli, G., Monasson, R., Weigt, M.: A variational description of the ground state structure in random satisfiability problems. Eur. Phys. J. B 14, 551 (2000). https://doi.org/10.1007/s100510051065

    Article  ADS  Google Scholar 

  8. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for satisfiability. Random Struct. Algorithms 27(2), 201–226 (2005). https://doi.org/10.1002/rsa.20057

    Article  MathSciNet  MATH  Google Scholar 

  9. Brightwell, G.R., Winkler, P.: A second threshold for the hard-core model on a bethe lattice. Random Struct. Algorithms 24(3), 303–314 (2004). https://doi.org/10.1002/rsa.20006

    Article  MathSciNet  MATH  Google Scholar 

  10. Budzynski, L., Ricci-Tersenghi, F., Semerjian, G.: Biased landscapes for random constraint satisfaction problems. J. Stat. Mech. 2019(2), 023302 (2019). https://doi.org/10.1088/1742-5468/ab02de

    Article  MathSciNet  Google Scholar 

  11. Chi, Z.: Nonnormal small jump approximation of infinitely divisible distributions. Adv. Appl. Probab. 46(4), 963–984 (2014). https://doi.org/10.1239/aap/1418396239

    Article  MathSciNet  MATH  Google Scholar 

  12. Dall’Asta, L., Ramezanpour, A., Zecchina, R.: Entropy landscape and non-Gibbs solutions in constraint satisfaction problems. Phys. Rev. E 77, 031118 (2008). https://doi.org/10.1103/PhysRevE.77.031118

    Article  ADS  MathSciNet  Google Scholar 

  13. Ding, J., Sly, A., Sun, N.: Proof of the satisfiability conjecture for large k. In: Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing, STOC’15, pp. 59–68 (2015). https://doi.org/10.1145/2746539.2746619

  14. Feller, W.: An introduction to probability theory and its applications, vol. 2, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  15. Gabrié, M., Dani, V., Semerjian, G., Zdeborová, L.: Phase transitions in the q-coloring of random hypergraphs. J. Phys. A 50(50), 505002 (2017). https://doi.org/10.1088/1751-8121/aa9529

    Article  MathSciNet  MATH  Google Scholar 

  16. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  17. Krzakala, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G., Zdeborova, L.: Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci. 104(25), 10318–10323 (2007). https://doi.org/10.1073/pnas.0703685104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kschischang, F.R., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inform. Theory 47(2), 498–519 (2001). https://doi.org/10.1109/18.910572

    Article  MathSciNet  MATH  Google Scholar 

  19. Mertens, S., Mézard, M., Zecchina, R.: Threshold values of random k-sat from the cavity method. Random Struct. Algorithms 28(3), 340–373 (2006). https://doi.org/10.1002/rsa.20090

    Article  MathSciNet  MATH  Google Scholar 

  20. Mézard, M., Montanari, A.: Reconstruction on trees and spin glass transition. J. Stat. Phys. 124, 1317–1350 (2006). https://doi.org/10.1007/s10955-006-9162-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Mézard, M., Parisi, G.: The bethe lattice spin glass revisited. Eur. Phys. J. B 20, 217 (2001). https://doi.org/10.1007/PL00011099

    Article  ADS  MathSciNet  Google Scholar 

  22. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random satisfiability problems. Science 297, 812–815 (2002). https://doi.org/10.1126/science.1073287

    Article  ADS  Google Scholar 

  23. Molloy, M.: The freezing threshold for k-colourings of a random graph. In: Proceedings of the 44th symposium on Theory of Computing, p. 921. ACM (2012). https://doi.org/10.1145/2213977.2214060

  24. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: 2+p-sat: relation of typical-case complexity to the nature of the phase transition. Random Struct. Algorithms 15, 414 (1999). https://doi.org/10.1002/(SICI)1098-2418(199910/12)15:3/4<414::AID-RSA10>3.0.CO;2-G

    Article  MathSciNet  MATH  Google Scholar 

  25. Montanari, A., Semerjian, G.: Rigorous inequalities between length and time scales in glassy systems. J. Stat. Phys. 125, 23 (2006). https://doi.org/10.1007/s10955-006-9175-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Montanari, A., Ricci-Tersenghi, F., Semerjian, G.: Clusters of solutions and replica symmetry breaking in random k-satisfiability. J. Stat. Mech. P04004, (2008). https://doi.org/10.1088/1742-5468/2008/04/p04004

  27. Montanari, A., Restrepo, R., Tetali, P.: Reconstruction and clustering in random constraint satisfaction problems. SIAM J. Discrete Math. 25(2), 771–808 (2011). https://doi.org/10.1137/090755862

    Article  MathSciNet  MATH  Google Scholar 

  28. Mossel, E., Peres, Y.: Information flow on trees. Ann. Appl. Probab. 13(3), 817–844 (2003). https://doi.org/10.1214/aoap/1060202828

    Article  MathSciNet  MATH  Google Scholar 

  29. Nishimori, H.: Statistical Physics of Spin Glasses and Information Processing: An Introduction. Oxford University Press, Oxford (2001)

    Book  Google Scholar 

  30. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  31. Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  32. Sato, K.I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  33. Semerjian, G.: On the freezing of variables in random constraint satisfaction problems. J. Stat. Phys. 130, 251 (2008). https://doi.org/10.1007/s10955-007-9417-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Sly, A.: Reconstruction of random colourings. Commun. Math. Phys. 288(3), 943–961 (2009). https://doi.org/10.1007/s00220-009-0783-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Sly, A., Zhang, Y.: Reconstruction of colourings without freezing. arXiv preprint arXiv:1610.02770 (2016)

  36. Watanabe, T., Yamamuro, K.: Ratio of the tail of an infinitely divisible distribution on the line to that of its lévy measure. Electron. J. Probab. 15, 44–74 (2010). https://doi.org/10.1214/EJP.v15-732

    Article  MathSciNet  MATH  Google Scholar 

  37. Zdeborová, L., Krzakala, F.: Phase transitions in the coloring of random graphs. Phys. Rev. E 76, 031131 (2007). https://doi.org/10.1103/PhysRevE.76.031131

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

GS is part of the PAIL grant of the French Agence Nationale de la Recherche, ANR-17-CE23-0023-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Budzynski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Federico Ricci-Tersenghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A The Graph Coloring Case

A The Graph Coloring Case

This Appendix is devoted to the graph coloring problem. We shall present computations that are the counterparts of the ones explained in Sect. 2 and 3 of the main text for the hypergraph bicoloring problem, namely the definition of the reconstruction problem and its study in the limit where the number of colors q and the degree c diverge simultaneously according to (1), and show that the very same equations summarized at the beginning of Sect. 4 arise in this limit. As the computations are quite similar we will be more succinct than in the main text and concentrate on the specificities of the coloring problem.

Let us consider a rooted tree with spins \(\sigma _i\) placed on its vertices. These spins can take q values, interpreted as colors, \(\sigma _i\in \{1,\dots ,q \}\). A proper coloring of the tree is a configuration of the spins such that no edge is monochromatic (i.e. no pair of adjacent vertices are given the same color). A uniform proper coloring can be drawn in a broadcast fashion, by choosing the color \(\sigma \) of the root uniformly at random among the q possible ones, then each descendent of the root is assigned a color uniformly at random among the \(q-1\) colors distinct from \(\sigma \), and this is repeated recursively down to the n-th generation of the tree. In the reconstruction problem an observer is then provided with the colors on the vertices of the n-th generation of the tree only, and asked to guess the color of the root. The optimal strategy is to compute \(\eta \), the posterior probability of the root given the observations, which is a distribution over \(\{1,\dots ,q\}\). A moment of thought reveals that the probability distribution of \(\eta \), with respect to a broadcast process conditioned on the root value \(\sigma \), and with respect to a random choice of the tree as a Galton-Watson branching process with Poisson offspring distribution of mean c, is a measure \(P_{\sigma ,n}(\eta )\) that can be determined recursively through the induction relation:

$$\begin{aligned} P_{\sigma ,n+1}(\eta ) = \sum _{l=0}^\infty e^{-c} \frac{c^l}{l!} \frac{1}{(q-1)^l} \sum _{\sigma _1,\dots ,\sigma _l \ne \sigma } \int \prod _{i=1}^l \mathrm{d}P_{\sigma _i,n}(\eta _i) \, \delta (\eta -f_\mathrm{c}(\eta _1,\dots ,\eta _l)) \ , \end{aligned}$$
(86)

where the Belief Propagation recursion function \(f_{\mathrm{c}}\) is defined here in such a way that \(\eta =f_\mathrm{c}(\eta _1,\dots ,\eta _l)\) means

$$\begin{aligned} \eta (\tau ) = \frac{\underset{i=1}{\overset{l}{\prod }}(1-\eta _i(\tau ))}{\underset{\tau '}{\sum } \underset{i=1}{\overset{l}{\prod }}(1-\eta _i(\tau '))} \ . \end{aligned}$$
(87)

The initial condition of this recursive computation is given by \(P_{\sigma ,0}=\delta (\eta - \delta _\sigma )\), where \(\delta _\sigma \) is the measure concentrated on the color \(\sigma \), i.e. \(\delta _\sigma (\tau ) = {\mathbb {I}}(\sigma =\tau )\), which corresponds to the colors being revealed on the leaves of the tree. These equations correspond to (9,12,13) for the hypergraph bicoloring problem.

We separate now the contribution of “hard fields”, or frozen variables, namely the configurations of boundary variables that determine unambiguously the root in the naive reconstruction procedure. This forced value can only be the correct one the root had in the broadcast process, hence we shall write :

$$\begin{aligned} P_{\sigma ,n}(\eta ) = w_n \, \delta (\eta -\delta _\sigma ) + (1-w_n) \, Q_{\sigma ,n}(\eta ) \ , \end{aligned}$$
(88)

where \(Q_{\sigma ,n}\) has no atom on \(\delta _\sigma \); this mimicks the decomposition (22) of the main text. Plugging this decomposition in (86) yields the evolution equation for the weight of the hard fields:

$$\begin{aligned} w_{n+1} = \left( 1-e^{-\frac{c w_n}{q-1}} \right) ^{q-1} \ , \qquad \text {with} \ \ w_0=1 \ . \end{aligned}$$
(89)

Indeed \(f_{\mathrm{c}}(\eta _1,\dots ,\eta _l) = \delta _\sigma \) if and only if for each color \(\sigma '\ne \sigma \) at least one of the arguments \(\eta _i\) is equal to \(\delta _{\sigma '}\), thus forbidding all colors except \(\sigma \). The number of hard fields of the color \(\sigma ' \ne \sigma \) is easily seen from (86) to be Poisson distributed with average \(\frac{c w_n}{q-1}\), independently from one color \(\sigma '\) to another, from which (89) follows.

The recursion (89) has a bifurcation at \(c_{\mathrm{r}}(q)\), in the sense that \(w_n \rightarrow 0\) as \(n \rightarrow \infty \) if and only if \(c<c_{\mathrm{r}}(q)\). Writing down the equations fixing \(c_{\mathrm{r}}\) and \(w_{\mathrm{r}}\) at the bifurcation, which are similar to (25), and then expanding them for large q one finds the asymptotic expansion \(c_{\mathrm{r}}=q (\ln q + \ln \ln q + 1 + o(1))\). We shall thus study the large q limit with c getting also large, on the scale \(c=q (\ln q + \ln \ln q + \gamma )\) with \(\gamma \) finite. In this limit one finds that for n finite

$$\begin{aligned} w_n = 1 - \frac{x_n}{\ln q} + o\left( \frac{1}{\ln q} \right) \ , \end{aligned}$$
(90)

where \(x_n\) is of order 1 and obeys exactly the same recursion as in the bicoloring case, namely \(x_0=0\) and \(x_{n+1}=e^{-\gamma + x_n}\).

Let us now simplify the evolution equation for the distributions \(Q_{\sigma ,n}\) of the soft fields. First of all we insert the decomposition (88) in the right hand side of (86) and obtain, without any approximation,

$$\begin{aligned}&P_{\sigma ,n+1}(\eta ) = \sum _{l=0}^\infty e^{-c(1-w_n)} \frac{(c(1-w_n))^l}{l!} \frac{1}{(q-1)^l} \sum _{\sigma _1,\dots ,\sigma _l \ne \sigma } \sum _{\{p_{\sigma '}=0,1\}_{\sigma ' \ne \sigma }} \nonumber \\&\quad \prod _{\sigma ' \ne \sigma } \left( e^{-\frac{c w_n}{q-1}}\right) ^{p_{\sigma '}} \left( 1-e^{-\frac{c w_n}{q-1}}\right) ^{1-p_{\sigma '}} \int \prod _{i=1}^l \mathrm{d}Q_{\sigma _i,n}(\eta _i) \, \delta (\eta -{\widetilde{f}}_\mathrm{c}(\sigma ,\{p_{\sigma '}\}_{\sigma ' \ne \sigma };\eta _1,\dots ,\eta _l)) \ , \end{aligned}$$
(91)

where l is the number of neighbors of the root that receive a soft field, \(\sigma _1,\dots ,\sigma _l\) the colors these vertices have in the broadcast, and the indicator variables \(p_{\sigma '}\) are equal to 1 if and only if no neighbor of the root assigned the color \(\sigma '\) in the broadcast is perfectly recovered (i.e. receives a hard field). Hence the colors \(\sigma '\ne \sigma \) with \(p_{\sigma '}=0\) are precisely the ones forbidden for the root, as at least one of its neighbors is forced to this value. The relation \(\eta ={\widetilde{f}}_\mathrm{c}(\sigma ,\{p_{\sigma '}\}_{\sigma ' \ne \sigma };\eta _1,\dots ,\eta _l)\) is obtained by specializing \(f_{\mathrm{c}}\) of (87) to this pattern for the presence of hard fields in its arguments, and thus reads

$$\begin{aligned} \eta (\tau ) = \frac{p_\tau \underset{i=1}{\overset{l}{\prod }} (1-\eta _i(\tau ))}{\underset{\tau '}{\sum } p_{\tau '}\underset{i=1}{\overset{l}{\prod }}(1-\eta _i(\tau '))} \ , \end{aligned}$$
(92)

with the convention \(p_{\sigma }=1\).

Let us call \(p =\underset{\sigma ' \ne \sigma }{\sum } p_{\sigma '}\) the number of colors that satisfy the condition explained above; in the equation (91) it corresponds to a random variable with a binomial distribution of parameters \((q-1,e^{-\frac{c w_n}{q-1}})\). According to (90) the product of these parameters go to zero as \(1/\ln q\) in the limit we are considering, we shall thus truncate (91) on the smallest possible values of p. As \(p=0\) yields a hard field in the left hand side of (91), the distribution of the soft fields is dominated in this limit by the case \(p=1\). As a consequence the fields \(\eta \) in the support of \(Q_{\sigma ,n}\) have non-zero values on two colors only, \(\sigma \) and another one \(\sigma '\) uniformly distributed on the \(q-1\) possibilities. Let us parametrize this type of distributions via a distribution \(Q_n(h)\) on real random variables \(h\in [-1,1]\),

$$\begin{aligned} Q_{\sigma ,n}(\eta ) = \int \mathrm{d}Q_n(h) \frac{1}{q-1} \sum _{\sigma ' \ne \sigma } \delta (\eta -s(\sigma ,\sigma ';h)) \ , \end{aligned}$$
(93)

with

$$\begin{aligned} s(\sigma ,\sigma ';h)(\tau ) = {\left\{ \begin{array}{ll} \frac{1+h}{2} &{} \text {if} \ \ \tau = \sigma \\ \frac{1-h}{2} &{} \text {if} \ \ \tau = \sigma ' \\ 0 &{} \text {otherwise} \end{array}\right. } \ . \end{aligned}$$
(94)

Let us also denote \({\widehat{f}}_{\mathrm{c}}(\sigma ,\sigma ';\eta _1,\dots ,\eta _l)\) the function \({\widetilde{f}}_{\mathrm{c}}(\sigma ,\{p_{\sigma ''}\}_{\sigma '' \ne \sigma };\eta _1,\dots ,\eta _l)\) with \(p_{\sigma ''}=\delta _{\sigma '',\sigma '}\), in such a way that the only two non-zero components of \({\widehat{f}}_\mathrm{c}(\sigma ,\sigma ';\eta _1,\dots ,\eta _l)\) correspond to the colors \(\sigma \) and \(\sigma '\). Using this notation, and the parametrization (93), one can deduce from (91) the evolution equation for \(Q_{\sigma ,n}(\eta )\) at lowest order:

$$\begin{aligned} Q_{\sigma ,n+1}(\eta ) =&\frac{1}{q-1}\sum _{\sigma ' \ne \sigma } \sum _{l=0}^\infty e^{-c(1-w_n)} \frac{(c(1-w_n))^l}{l!} \prod _{i=1}^l \left( \frac{1}{(q-1)^2} \sum _{\begin{array}{c} \sigma _i\ne \sigma \\ \sigma '_i \ne \sigma _i \end{array}} \int \mathrm{d}Q_n(h_i) \right) \nonumber \\&\delta (\eta -{\widehat{f}}_\mathrm{c}(\sigma ,\sigma ';s(\sigma _1,\sigma '_1;h_1),\dots ,s(\sigma _l,\sigma '_l;h_l))) \end{aligned}$$
(95)

To put this expression under the form (93), and hence close the recursion on \(Q_n(h)\), it remains to notice that

$$\begin{aligned} {\widehat{f}}_{\mathrm{c}}(\sigma ,\sigma ';\eta _1,\dots ,\eta _l) = s(\sigma ,\sigma ',h) \quad \text {with} \ \ h=f(u_1,\dots ,u_l) \ , \quad u_i = {\widehat{u}}(\sigma ,\sigma ';\eta _i) \ , \end{aligned}$$
(96)

where f is the function defined for Ising spins in (9), and

$$\begin{aligned} {\widehat{u}}(\sigma ,\sigma ';\eta ) = \frac{\eta (\sigma ')-\eta (\sigma )}{2-\eta (\sigma )-\eta (\sigma ')} \ . \end{aligned}$$
(97)

For a fixed choice of \(\sigma \) and \(\sigma ' \ne \sigma \), one can see that \({\widehat{u}}(\sigma ,\sigma ';s(\sigma _i,\sigma '_i;h_i))\) is a random variable with respect to the uniform choices of \(\sigma _i \ne \sigma \) and \(\sigma '_i \ne \sigma _i\), that takes the following values (recall the definition of the function \(g_1\) from (39)):

$$\begin{aligned} {\left\{ \begin{array}{ll} g_1(h_i) &{} \text {with probability} \ \frac{q-2}{(q-1)^2} \ , \text {when} \ \sigma _i =\sigma ' \ , \ \sigma '_i \ne \sigma \ , \\ g_1(-h_i) &{} \text {with probability} \ \frac{q-2}{(q-1)^2} \ , \text {when} \ \sigma '_i =\sigma ' \ , \ \sigma _i \ne \sigma \ , \\ -g_1(-h_i) &{} \text {with probability} \ \frac{q-2}{(q-1)^2} \ , \text {when} \ \sigma '_i =\sigma \ , \ \sigma _i \ne \sigma ' \ , \\ h_i &{} \text {with probability} \ \frac{1}{(q-1)^2} \ , \text {when} \ \sigma '_i =\sigma \ , \ \sigma _i = \sigma ' \ , \\ 0 &{} \text {otherwise} \ . \end{array}\right. } \end{aligned}$$
(98)

As \(c(1-w_n)\frac{q-2}{(q-1)^2} \rightarrow x_n \) in the regime we are considering, the number of occurrences of the first three cases in (95) is Poissonian of mean \(x_n\); on the other hand the number of times the fourth case happens vanishes when q diverges (as 1/q), while the fifth does not contribute to (95), because \(f(u_1,\dots ,u_l,0,\dots ,0)=f(u_1,\dots ,u_l)\). We thus see by comparison with (42,43) that the probability distribution \(Q_n(h)\) defined in (93) obeys exactly the same recursion equations as the one derived in the main text for the hypergraph bicoloring model, the initial condition \(Q_1(h)=\delta (h)\) being also valid here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budzynski, L., Semerjian, G. The Asymptotics of the Clustering Transition for Random Constraint Satisfaction Problems. J Stat Phys 181, 1490–1522 (2020). https://doi.org/10.1007/s10955-020-02635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02635-8

Keywords

Navigation