Skip to main content
Log in

Attraction of Like-Charged Walls with Counterions Only: Exact Results for the 2D Cylinder Geometry

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a 2D system of identical mobile particles on the surface of a cylinder of finite length d and circumference W, immersed in a medium of dielectric constant \(\varepsilon \). The two end-circles of the cylinder are like-charged with the fixed uniform charge densities, the particles of opposite charge \(-e\) (e being the elementary charge) are coined as “counterions”; the system as a whole is electroneutral. Such a geometry is well defined also for finite numbers of counterions N. Our task is to derive an effective interaction between the end-circles mediated by the counterions in thermal equilibrium at the inverse temperature \(\beta \). The exact solution of the system at the free-fermion coupling \(\varGamma \equiv \beta e^2/\varepsilon =2\) is used to test the convergence of the pressure as the (even) number of particles increases from \(N=2\) to \(\infty \). The pressure as a function of distance d is always positive (effective repulsion between the like-charged circles), decaying monotonously; the numerical results for \(N=8\) counterions are very close to those in the thermodynamic limit \(N\rightarrow \infty \). For the couplings \(\varGamma =2\gamma \) with \(\gamma =1,2,\ldots \), there exists a mapping of the continuous two-dimensional (2D) Coulomb system with N particles onto the one-dimensional (1D) lattice model of N sites with interacting sets of anticommuting variables. This allows one to treat exactly the density profile, two-body density and the pressure for the couplings \(\varGamma =4\) and 6, up to \(N=8\) particles. Our main finding is that the pressure becomes negative at large enough distances d if and only if both like-charged walls carry a nonzero charge density. This indicates a like-attraction in the thermodynamic limit \(N\rightarrow \infty \) as well, starting from a relatively weak coupling constant \(\varGamma \) in between 2 and 4. As a by-product of the formalism, we derive specific sum rules which have direct impact on characteristics of the long-range decay of 2D two-body densities along the two walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The explicit formulas for \(Q_N(2)\) and \(Q_N(3)\) up to \(N=10\) will be sent upon request by the author.

References

  1. Alastuey, A., Jancovici, B.: On the classical two-dimensional one-component Coulomb plasma. J. Phys. 42, 1–12 (1981)

    MathSciNet  Google Scholar 

  2. Andelman, D.: Introduction to electrostatics in soft and biological matter. In: Poon, W.C.K., Andelman, D. (eds.) Soft Condensed Matter Physics in Molecular and Cell Biology, vol. 6. Taylor & Francis, New York (2006)

    MATH  Google Scholar 

  3. Attard, P.H.: Electrolytes and the electric double layer. Adv. Chem. Phys. XCII, 1–159 (1996)

    Google Scholar 

  4. Attard, P., Mitchell, D.J., Ninham, B.W.: Beyond Poisson–Boltzmann: images and correlations in the electric double layer. I. Counterions only. J. Chem. Phys. 88, 4987–4996 (1988)

    ADS  Google Scholar 

  5. Bakhshandeh, A., dos Santos, A.P., Levin, Y.: Weak and strong coupling theories for polarizable colloids and nanoparticles. Phys. Rev. Lett. 107, 107801 (2011)

    ADS  Google Scholar 

  6. Barbosa, M.C., Deserno, M., Holm, C.: A stable local density functional approach to ion-ion correlations. Europhys. Lett. 52, 80–86 (2000)

    ADS  Google Scholar 

  7. Baus, M., Hansen, J.P.: Statistical mechanics of simple Coulomb systems. Phys. Rep. 59, 1–94 (1980)

    ADS  MathSciNet  Google Scholar 

  8. Baxter, R.J.: Statistical mechanics of a one-dimensional Coulomb system with a uniform charge background. Proc. Camb. Phil. Soc. 59, 779–787 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Ben-Yaakov, D., Andelman, D., Podgornik, R., Harries, D.: Ion-specific hydration effects: extending the Poisson-Boltzmann theory. Curr. Opin. Colloid. Interface Sci. 16, 542–550 (2011)

    Google Scholar 

  10. Bloomfield, V.A.: Condensation of DNA by multivalent cations: considerations on mechanism. Biopolymers 31, 1471–1481 (1991)

    Google Scholar 

  11. Blum, L., Henderson, D., Lebowitz, J.L., Gruber, Ch., Martin, PhA: A sum rule for an inhomogeneous electrolyte. J. Chem. Phys. 75, 5974–5975 (1981)

    ADS  MathSciNet  Google Scholar 

  12. Boroudjerdi, H., Kim, Y.-W., Naji, A., Netz, R.R., Schlagberger, X., Serr, A.: Statics and dynamics of strongly charged soft matter. Phys. Rep. 416, 129–199 (2005)

    ADS  Google Scholar 

  13. Bratko, D., Jönsson, B., Wennerström, H.: Electrical double layer interactions with image charges. Chem. Phys. Lett. 128, 449–454 (1986)

    ADS  Google Scholar 

  14. Burak, Y., Andelman, D.: Test-charge theory for the electric double layer. Phys. Rev. E 70, 016102 (2004)

    ADS  Google Scholar 

  15. Burak, Y., Orland, H.: Manning condensation in two dimensions. Phys. Rev. E 73, 010501(R) (2006)

    ADS  Google Scholar 

  16. Carnie, S.L., Chan, D.Y.C.: The Stillinger–Lovett condition for non-uniform electrolytes. Chem. Phys. Lett. 77, 437–440 (1981)

    ADS  Google Scholar 

  17. Choquard, Ph: The two-dimensional one component plasma on a periodic strip. Helv. Phys. Acta 54, 332–332 (1981)

    Google Scholar 

  18. Choquard, Ph, Favre, P., Gruber, Ch.: On the equation of state of classical one component systems with long range forces. J. Stat. Phys. 23, 405–442 (1980)

    ADS  MathSciNet  Google Scholar 

  19. Dean, D.S., Horgan, R.R., Sentenac, D.: Boundary effects in the one-dimensional Coulomb gas. J. Stat. Phys. 90, 899–926 (1998)

    ADS  MATH  Google Scholar 

  20. Dean, D.S., Horgan, R.R., Naji, A., Podgornik, R.: One-dimensional counterion gas between charged surfaces: exact results compared with weak- and strong-coupling analyses. J. Chem. Phys. 130, 094504 (2009)

    ADS  Google Scholar 

  21. Dubois, M., Zemb, T., Fuller, N., Rand, R.P., Pargesian, V.A.: Equation of state of a charged bilayer system: measure of the entropy of the lamellar-lamellar transition in DDABr. J. Chem. Phys. 108, 7855–7869 (1998)

    ADS  Google Scholar 

  22. Edwards, S.F., Lenard, A.: Exact statistical mechanics of a one-dimensional system with Coulomb forces. II. The method of functional integration. J. Math. Phys. 3, 778–792 (1962)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Forrester, P.J.: Exact results for two-dimensional Coulomb systems. Phys. Rep. 301, 235–270 (1998)

    ADS  MathSciNet  Google Scholar 

  24. Forsman, J.: A simple correlation-corrected Poisson–Boltzmann theory. J. Phys. Chem. B 108, 9236–9245 (2004)

    Google Scholar 

  25. Goldoni, G., Peeters, M.: Stability, dynamical properties, and melting of a classical bilayer Wigner crystal. Phys. Rev. B 53, 4591–4603 (1996)

    ADS  Google Scholar 

  26. Grimaldo, J.A.M., Téllez, G.: Relations among two methods for computing the partition function of the two-dimensional one-component plasma. J. Stat. Phys. 160, 4–28 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Grønbech-Jensen, N., Mashl, R.J., Bruinsma, R.F., Gelbart, W.M.: Counterion-induced attraction between rigid polyelectrolytes. Phys. Rev. Lett. 78, 2477–2480 (1997)

    ADS  Google Scholar 

  28. Grosberg, A.Y., Nguyen, T.T., Shklovskii, B.I.: Colloquium: the physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 74, 329–345 (2002)

    ADS  Google Scholar 

  29. Gulbrand, L., Jönsson, B., Wennerström, H., Linse, P.: Electrical double layer forces. A Monte Carlo study. J. Chem. Phys. 80, 2221–2228 (1984)

    ADS  Google Scholar 

  30. Hansen, J.P., Löwen, H.: Effective interactions between electric double layers. Annu. Rev. Phys. Chem. 51, 209–242 (2000)

    ADS  Google Scholar 

  31. Henderson, D., Blum, L.: Some exact results and the application of the mean spherical approximation to charged hard spheres near a charged hard wall. J. Chem. Phys. 69, 5441–5449 (1978)

    ADS  Google Scholar 

  32. Henderson, D., Blum, L., Lebowitz, J.L.: An exact formula for the contact value of the density profile of a system of charged hard spheres near a charged wall. J. Electroanal. Chem. 102, 315–319 (1979)

    Google Scholar 

  33. Jancovici, B.: Exact results for the two-dimensional one-component plasma. Phys. Rev. Lett. 46, 386–388 (1981)

    ADS  MathSciNet  Google Scholar 

  34. Jancovici, B.: Classical Coulomb systems near a plane wall. I. J. Stat. Phys. 28, 43–65 (1982)

    ADS  MathSciNet  Google Scholar 

  35. Jancovici, B.: Classical Coulomb systems near a plane wall. II. J. Stat. Phys. 29, 263–280 (1982)

    ADS  MathSciNet  Google Scholar 

  36. Jancovici, B.: Surface properties of a classical two-dimensional one-component plasma: Exact results. J. Stat. Phys. 34, 803–815 (1984)

    ADS  MathSciNet  Google Scholar 

  37. Jancovici, B.: Inhomogeneous two-dimensional plasmas. In: Henderson, D. (ed.) Inhomogeneous Fluids, pp. 201–237. Dekker, New York (1992)

    Google Scholar 

  38. Jancovici, B.: Classical Coulomb systems: screening and correlations revisited. J. Stat. Phys. 80, 445–459 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Jancovici, B., Šamaj, L.: Charge correlations in a Coulomb system along a plane wall: a relation between asymptotic behavior and dipole moment. J. Stat. Phys. 105, 193–209 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Kanduč, M., Podgornik, R.: Electrostatic image effects for counterions between charged planar walls. Eur. Phys. J. E 23, 265–274 (2007)

    Google Scholar 

  41. Kanduč, M., Trulsson, M., Naji, A., Burak, Y., Forsman, J., Podgornik, R.: Weak- and strong-coupling electrostatic interactions between asymmetrically charged planar surfaces. Phys. Rev. E 78, 061105 (2008)

    ADS  Google Scholar 

  42. Kanduč, M., Naji, Forsman, J., Podgornik R: Strong electrostatic coupling in the presence of salt. J. Chem. Phys. 132, 124701 (2010)

    ADS  Google Scholar 

  43. Kanduč, M., Naji, Forsman, J., Podgornik R: Dressed counterions: polyvalent and monovalent ions at charged dielectric interfaces. Phys. Rev. E 84, 011502 (2011)

    ADS  Google Scholar 

  44. Kanduč, M., Naji, Forsman, J., Podgornik R: Attraction between neutral dielectrics mediated by multivalent ions in an asymmetric ionic fluid. J. Chem. Phys. 137, 174704 (2012)

    ADS  Google Scholar 

  45. Kanduč, M., Moazzami-Gudarzi, M., Valmacco, V., Podgornik, R., Trefalt, G.: Interactions between charged particles with bathing multivalent counterions: experiments vs. dressed ion theory. Phys. Chem. Chem. Phys. 19, 10069–10080 (2017)

    Google Scholar 

  46. Kékicheff, P., Marčelja, S., Senden, T.J., Shubin, V.E.: Charge reversal seen in electrical double layer interaction of surfaces immersed in 2:1 calcium electrolyte. J. Chem. Phys. 99, 6098–6113 (1993)

    ADS  Google Scholar 

  47. Khan, A., Jönsson, B., Wennerström, H.: Phase equilibria in the mixed sodium and calcium di-2-ethylhexylsulfosuccinate aqueous system. An illustration of repulsive and attractive double-layer forces. J. Phys. Chem. 89, 5180–5184 (1985)

    Google Scholar 

  48. Kjellander, R., Marčelja, S.: Correlation and image charge effects in electric double-layers. Chem. Phys. Lett. 112, 49–53 (1984)

    ADS  Google Scholar 

  49. Kjellander, R., Marčelja, S., Quirk, J.P.: Attractive double-layer interactions between calcium clay particles. J. Colloid Interface Sci. 126, 194–211 (1988)

    ADS  Google Scholar 

  50. Kunz, H.: The one-dimensional classical electron gas. Ann. Phys. 85, 303–335 (1974)

    ADS  MathSciNet  Google Scholar 

  51. Lenard, A.: Exact statistical mechanics of a one-dimensional system with Coulomb forces. J. Math. Phys. 2, 682–693 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Levin, Y.: Electrostatic correlations: from plasma to biology. Rep. Prog. Phys. 65, 1577 (2002)

    ADS  Google Scholar 

  53. Levin, Y., Arenzon, J.J., Stilck, J.F.: The nature of attraction between like-charged rods. Phys. Rev. Lett. 83, 2680 (1999)

    ADS  Google Scholar 

  54. Lovett, R., Mou, C.Y., Buff, F.P.: The structure of the liquid–vapor interface. J. Chem. Phys. 65, 570–572 (1976)

    ADS  Google Scholar 

  55. Ma, Sh-K: Statistical Mechanics. World Scientific, Singapore (1985)

    MATH  Google Scholar 

  56. Martin, PhA: Sum rules in charged fluids. Rev. Mod. Phys. 60, 1075–1127 (1988)

    ADS  MathSciNet  Google Scholar 

  57. Mehta, M.L.: Random Matrices, 2nd edn. Academic Press, London (1990)

    Google Scholar 

  58. Messina, R.: Electrostatics in soft matter. J. Phys.: Condens. Matter 21, 113102 (2009)

    ADS  Google Scholar 

  59. Moreira, A.G., Netz, R.R.: Strong-coupling theory for counter-ion distributions. Europhys. Lett. 52, 705–711 (2000)

    ADS  Google Scholar 

  60. Moreira, A.G., Netz, R.R.: Binding of similarly charged plates with counterions only. Phys. Rev. Lett. 87, 078301 (2001)

    ADS  Google Scholar 

  61. Moreira, A.G., Netz, R.R.: Simulations of counterions at charged plates. Eur. Phys. J. E 8, 33–58 (2002)

    Google Scholar 

  62. Naji, A., Netz, R.R.: Counterions at charged cylinders: criticality and universality beyond mean-field theory. Phys. Rev. Lett. 95, 185703 (2005)

    ADS  Google Scholar 

  63. Naji, A., Netz, R.R.: Scaling and universality in the counterion-condensation transition at charged cylinders. Phys. Rev. E 73, 056105 (2006)

    ADS  Google Scholar 

  64. Naji, A., Kanduč, M., Forsman, J., Podgornik, R.: Perspective: Coulomb fluids-weak coupling, strong coupling, in between and beyond. J. Chem. Phys. 139, 150901 (2013)

    ADS  Google Scholar 

  65. Netz, R.R.: electrostatics of counter-ions at and between planar charged walls: from Poisson–Boltzmann to the strong-coupling theory. Eur. Phys. J. E 5, 557–574 (2001)

    Google Scholar 

  66. Netz, R.R., Orland, H.: Beyond Poisson–Boltzmann: fluctuation effects and correlation functions. Eur. Phys. J. E 1, 203–214 (2000)

    Google Scholar 

  67. Nordholm, S.: Simple analysis of the thermodynamic properties of the one-component plasma. Chem. Phys. Lett. 105, 302–307 (1984)

    ADS  Google Scholar 

  68. Palaia, I., Trulsson, M., Šamaj, L., Trizac, E.: A correlation-hole approach to the electric double layer with counter-ions only. Mol. Phys. 116, 3134–3146 (2018)

    ADS  Google Scholar 

  69. Podgornik, R.: An analytic treatment of the first-order correction to the Poisson–Boltzmann interaction free energy in the case of counter-ion only Coulomb fluid. J. Phys. A 23, 275–284 (1990)

    ADS  MATH  Google Scholar 

  70. Rau, D.C., Pargesian, V.A.: Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Evidence for long range attractive hydration forces. Biophys. J. 61, 246–259 (1992)

    Google Scholar 

  71. Rouzina, I., Bloomfield, V.A.: Macroion attraction due to electrostatic correlation between screening counterions. 1. Mobile surface-adsorbed ions and diffuse ion cloud. J. Phys. Chem. 100, 9977–9989 (1996)

    Google Scholar 

  72. Šamaj, L.: Microscopic calculation of the dielectric susceptibility tensor for Coulomb fluids. J. Stat. Phys. 100, 949–967 (2000)

    MathSciNet  MATH  Google Scholar 

  73. Šamaj, L.: Is the two-dimensional one-component plasma exactly solvable? J. Stat. Phys. 117, 131–158 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  74. Šamaj, L.: Counter-ions at single charged wall: sum rules. Eur. Phys. J. E 36, 100 (2013)

    Google Scholar 

  75. Šamaj, L.: Counter-ions near a charged wall: exact results for disc and planar geometries. J. Stat. Phys. 161, 227–249 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  76. Šamaj, L.: Amplitude function of asymptotic correlations along charged wall in Coulomb fluids. J. Stat. Phys. 164, 304–320 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  77. Šamaj, L.: Finite-size effects in non-neutral two-dimensional Coulomb fluids. J. Stat. Phys. 168, 434–446 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  78. Šamaj, L., Percus, J.K.: A functional relation among the pair correlations of the two-dimensional one-component plasma. J. Stat. Phys. 80, 811–824 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  79. Šamaj, L., Trizac, E.: Counterions at highly charged interfaces: from one plate to like-charge attraction. Phys. Rev. Lett. 106, 078301 (2011)

    ADS  Google Scholar 

  80. Šamaj, L., Trizac, E.: Wigner-crystal formulation of strong-coupling theory for counterions near planar charged interfaces. Phys. Rev. E 24, 041401 (2011)

    ADS  Google Scholar 

  81. Šamaj, L., Trizac, E.: Counter-ions at charged walls: two-dimensional systems. Eur. Phys. J. E 34, 20 (2011)

    Google Scholar 

  82. Šamaj, L., Trizac, E.: Counter-ions between or at asymmetrically charged walls: 2D free-fermion point. J. Stat. Phys. 156, 932–947 (2014)

    ADS  MATH  Google Scholar 

  83. Šamaj, L., Wagner, J., Kalinay, P.: Translation symmetry breaking in the one-component plasma on the cylinder. J. Stat. Phys. 117, 159–178 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  84. Šamaj, L., dos Santos, A.P., Levin, Y., Trizac, E.: Mean-field beyond mean-field: the single particle view for moderately to strongly coupled charged fluids. Soft Matter 12, 8768–8773 (2016)

    ADS  Google Scholar 

  85. Samin, S., Tsori, I.: Attraction between like-charge surfaces in polar mixtures. Europhys. Lett. 95, 36002 (2011)

    ADS  Google Scholar 

  86. Santangelo, C.D.: Computing counterion densities at intermediate coupling. Phys. Rev. E 73, 041512 (2006)

    ADS  Google Scholar 

  87. Schweigert, I.V., Schweigert, V.A., Peeters, F.M.: Melting of the classical bilayer Wigner crystal: influence of lattice symmetry. Phys. Rev. Lett. 82, 5293–5296 (1999)

    ADS  Google Scholar 

  88. Shklovskii, B.I.: Screening of a macroion by multivalent ions: correlation-induced inversion of charge. Phys. Rev. E 60, 5802–5811 (1999)

    ADS  Google Scholar 

  89. Stillinger, F.H., Lovett, R.: Ion-pair theory of concentrated electrolytes. I. Basic concepts. J. Chem. Phys. 48, 3858–3868 (1968)

    ADS  Google Scholar 

  90. Stillinger, F.H., Lovett, R.: General restriction on the distribution of ions in electrolytes. J. Chem. Phys. 49, 1991–1994 (1968)

    ADS  Google Scholar 

  91. Strandburg, K.J.: Two-dimensional melting. Rev. Mod. Phys. 60, 161–207 (1988)

    ADS  Google Scholar 

  92. Téllez, G., Forrester, P.J.: Exact finite-size study of the 2d-OCP at \(\Gamma =4\) and \(\Gamma =6\). J. Stat. Phys. 97, 489–521 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  93. Téllez, G., Forrester, P.J.: Expanded Vandermonde powers and sum rules for the two-dimensional one-component plasma. J. Stat. Phys. 147, 825–855 (2012)

    MathSciNet  MATH  Google Scholar 

  94. Téllez, G., Trizac, E.: Screening like charges in one-dimensional Coulomb systems: exact results. Phys. Rev. E 92, 042134 (2015)

    ADS  MathSciNet  Google Scholar 

  95. Usenko, A.S., Yakimenko, I.P.: Interaction energy of stationary charges in a bounded plasma. Sov. Tech. Phys. Lett. 5, 549–550 (1979)

    Google Scholar 

  96. Varela, L., Téllez, G., Trizac, E.: Configurational and energy landscape in one-dimensional Coulomb systems. Phys. Rev. E 97, 022112 (2017)

    ADS  Google Scholar 

  97. Wertheim, M.S.: Correlations in the liquid–vapor interface. J. Chem. Phys. 65, 2377–2381 (1976)

    ADS  Google Scholar 

Download references

Acknowledgements

The support received from the project EXSES APVV-16-0186 and VEGA Grant No. 2/0003/18 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Šamaj.

Additional information

Communicated by Yariv Kafri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šamaj, L. Attraction of Like-Charged Walls with Counterions Only: Exact Results for the 2D Cylinder Geometry. J Stat Phys 181, 1699–1729 (2020). https://doi.org/10.1007/s10955-020-02642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02642-9

Keywords

Navigation