Skip to main content
Log in

Averaging Principle for Multiscale Stochastic Fractional Schrödinger–Korteweg-de Vries System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This work concerns the averaging principle for multiscale stochastic fractional Schrödinger–Korteweg-de Vries system. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, the multiscale system can be reduced to a single stochastic fractional Korteweg-de Vries equation (averaged equation) with a modified coefficient, the slow component of multiscale system towards to the solution of the averaged equation in moment. In order to prove the averaging principle, there are two key points: uniform bounds for the solution and Hölder continuity of time variable for the slow component. For this, we need a crucial property—smoothing effect of the fractional Korteweg-de Vries semigroup, but the traditional method can’t help us obtain this property. Such analysis does not follow in a straightforward manner from results already available in the mathematical literature. On the contrary, it requires the introduction of some new ideas and techniques. We try to overcome this difficulty by the duality method, the interpolation arguments, the energy estimate method and refined inequality technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kawahara, T., Sugimoto, N., Kakutani, T.: Nonlinear interaction between short and long capillary-gravity waves. J. Phys. Soc. Jpn. 39(5), 1379–1386 (1975)

    Article  ADS  Google Scholar 

  2. Appert, K., Vaclavik, J.: Dynamics of coupled solitons. Phys. Fluids 20(11), 1845–1849 (1977)

    Article  ADS  Google Scholar 

  3. Makhankov, V.G.: On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying Boussinesq’s equation. Phys. Lett. A 50(1), 42–44 (1974)

    Article  ADS  Google Scholar 

  4. Nishikawa, K., Hojo, H., Mima, K., et al.: Coupled nonlinear electron-plasma and ion-acoustic waves. Phys. Rev. Lett. 33(3), 148 (1974)

    Article  ADS  Google Scholar 

  5. Yajima, N., Satsuma, J.: Soliton solutions in a diatomic lattice system. Progr. Theoret. Phys. 62(2), 370–378 (1979)

    Article  ADS  Google Scholar 

  6. Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: solutions and applications. Chaos 7(4), 753–764 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  7. Zaslavsky, G.M., Edelman, M.: Weak mixing and anomalous kinetics along filamented surfaces. Chaos 11(2), 295–305 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. Nigmatullin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry. Physica Status Solidi (b) 133(1), 425–430 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  9. Lebowitz, J.L., Montroll, E.W.: Nonequilibrium phenomena. II-From stochastics to hydrodynamics. NASA STI/Recon Technical Report A 85 (1984)

  10. Caffarelli, L., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. Guo, Y., Wang, M., Tang, Y.: Higher regularity of global attractors of a weakly dissipative fractional Korteweg de Vries equation. J. Math. Phys. 56(12), 122702 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. de Bouard, A., Debussche, A.: On the stochastic Korteweg-de Vries equation. J. Funct. Anal. 154(1), 215–251 (1998)

    Article  MathSciNet  Google Scholar 

  13. de Bouard, A., Debussche, A.: Random modulation of solitons for the stochastic Korteweg-de Vries equation. Ann. l’Inst. Henri Poincaré (C) Non Linear Anal. 24(2), 251–278 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Oh, T.: Periodic stochastic Korteweg-de Vries equation with additive space-time white noise. Anal. PDE 2(3), 281–304 (2010)

    Article  MathSciNet  Google Scholar 

  15. Bao, J., Yin, G., Yuan, C.: Two-time-scale stochastic partial differential equations driven by \(\alpha \)-stable noises: averaging principles. Bernoulli 23, 645–669 (2017)

    Article  MathSciNet  Google Scholar 

  16. Dong, Z., Sun, X., Xiao, H., et al.: Averaging principle for one dimensional stochastic Burgers equation. J. Differ. Equ. (2018)

  17. Fu, H., Wan, L., Liu, J.: Strong convergence in averaging principle for stochastic hyperbolic-parabolic equations with two time-scales. Stoch. Process. Appl. 125, 3255–3279 (2015)

    Article  MathSciNet  Google Scholar 

  18. Fu, H., Liu, J.: Strong convergence in stochastic averaging principle for two time-scales stochastic partial differential equations. J. Math. Anal. Appl. 384, 70–86 (2011)

    Article  MathSciNet  Google Scholar 

  19. Gao, P.: Averaging principle for the higher order nonlinear Schrödinger equation with a random fast oscillation. J. Stat. Phys. 171(5), 897–926 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. Wang, W., Roberts, A.J.: Average and deviation for slow-fast stochastic partial differential equations. J. Differ. Equ. 253, 1265–1286 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  21. Wenjing, X., Wei, X.: An averaging principle for the time-dependent abstract stochastic evolution equations with infinite delay and wiener process. J. Stat. Phys. 1–16 (2020)

  22. Xu, Y., Duan, J., Xu, W.: An averaging principle for stochastic dynamical systems with Lvy noise. Physica D 240(17), 1395–1401 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  23. Khasminskii, R.Z.: On the principle of averaging the Itô stochastic differential equations. Kibernetika 4, 260–279 (1968). (in Russian)

    Google Scholar 

  24. Givon, D.: Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems. Multiscale Model. Simul. 6(2), 577–594 (2007)

    Article  MathSciNet  Google Scholar 

  25. Golec, J.: Stochastic averaging principle for systems with pathwise uniqueness. Stoch. Anal. Appl. 13(3), 307–322 (1995)

    Article  MathSciNet  Google Scholar 

  26. Guo, B., Zeng, M.: Solutions for the fractional Landau-Lifshitz equation. J. Math. Anal. Appl. 361(1), 131–138 (2010)

    Article  MathSciNet  Google Scholar 

  27. Temam, R.: Navier-Stokes Equations and Nonlinear Functional Analysis. SIAM, New York (1995)

    Book  Google Scholar 

  28. Gao, P.: The stochastic Swift-Hohenberg equation. Nonlinearity 30(9), 3516–3559 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1985)

    MATH  Google Scholar 

Download references

Acknowledgements

Peng Gao would like to thank the referees and the editor for their careful comments and useful suggestions. Peng Gao would like to thank the financial support of the China Scholarship Council (No. 201806625036) and the hospitality of CNRS and IMJ, Université Paris Diderot-Paris 7 during his visit from December 2018 to November 2019. This work is supported by the Fundamental Research Funds for the Central Universities (2412020FZ022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Gao.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 2.1

Proof

It is easy to see \(v^{u,X}\) satisfies

$$\begin{aligned} \begin{array}{l} \left\{ \begin{array}{lll} dv=[-i(-\partial _{xx})^{\theta }v-\lambda v-ig(u,v)]dt-i\sigma _{2}(u,v)dB_{2}, \\ v(x,0)=X(x) \end{array} \right. \end{array} \begin{array}{lll} \text {in}~{\mathbb {T}}\times [0,T], \\ \text {in}~{\mathbb {T}}. \end{array} \end{aligned}$$

(1) \(\bullet \) For the sake of simplicity, and \(v^{u,X}\) is denoted by v. By applying the generalized Itô formula with \(\frac{1}{2}\Vert v^{u,X}\Vert ^{2},\) we can obtain that

$$\begin{aligned} \begin{aligned} \Vert v\Vert ^{2} =&\Vert X\Vert ^{2}+2\int _{0}^{t}(v,-i(-\partial _{xx})^{\beta }v-\lambda v-ig(u,v))ds \\&+2\int _{0}^{t}(v,i\sigma _{2}(u,v))dB_{2}+\int _{0}^{t} \Vert \sigma _{2}(u,v)\Vert ^{2}ds \\ =&\Vert X\Vert ^{2}-2\lambda \int _{0}^{t}\Vert v\Vert ^{2}ds-2\int _{0}^{t}(v,ig(u,v))ds\\&+2\int _{0}^{t}(v,i\sigma _{2}(u,v))dB_{2}+\int _{0}^{t}\Vert \sigma _{2}(u,v)\Vert ^{2}ds. \end{aligned} \end{aligned}$$

Taking mathematical expectation from both sides of above equation, we have

$$\begin{aligned} {\mathbb {E}}\Vert v\Vert ^{2} =\Vert X\Vert ^{2}-2\lambda {\mathbb {E}}\int _{0}^{t}\Vert v\Vert ^{2}ds -2{\mathbb {E}}\int _{0}^{t}(v,ig(u,v))ds+{\mathbb {E}} \int _{0}^{t}\Vert \sigma _{2}(u,v)\Vert ^{2}ds, \end{aligned}$$

namely, \(\frac{d}{dt}{\mathbb {E}}\Vert v\Vert ^{2}=-2\lambda {\mathbb {E}}\Vert v\Vert ^{2}-2{\mathbb {E}}(v,ig(u,v))+{\mathbb {E}}\Vert \sigma _{2}(u,v)\Vert ^{2}.\) With the help of the Young’s inequality (Lemma 2.3) and choosing the suitable \(\eta ,\) we can obtain

$$\begin{aligned} \frac{d}{dt}{\mathbb {E}}\Vert v^{u,X}\Vert ^{2} \le -2\lambda {\mathbb {E}}\Vert v^{u,X}\Vert ^{2}+3L_{g}{\mathbb {E}}\Vert v^{u,X}\Vert ^{2}+C\Vert u\Vert ^{2}+C . \end{aligned}$$

Thus \(\frac{d}{dt}{\mathbb {E}}\Vert v^{u,X}\Vert ^{2} \le -\lambda {\mathbb {E}}\Vert v^{u,X}\Vert ^{2}+C\Vert u\Vert ^{2}+C.\) Hence, by applying Lemma 2.4 with \({\mathbb {E}}\Vert v^{u,X}(t)\Vert ^{2}\), we have

$$\begin{aligned} {\mathbb {E}}\Vert v^{u,X}(t)\Vert ^{2}\le e^{-2\lambda t}\Vert X\Vert ^{2}+C(\Vert u\Vert ^{2}+1). \end{aligned}$$

\(\bullet \) It follows from the energy method that

$$\begin{aligned} \begin{aligned}&{\mathbb {E}}\Vert (v^{u,X}-v^{u,Y})(t)\Vert ^{2} \\&\quad =\Vert X-Y\Vert ^{2}+2{\mathbb {E}}\int _{k\delta }^{t}(v^{u,X}-v^{u,Y}, -i(-\partial _{xx})^{\theta }(v^{u,X}-v^{u,Y}) \\&\qquad -\lambda v^{u,X}+\lambda v^{u,Y}-ig(u,v^{u,X})+ig(u,v^{u,Y}))ds \\&\qquad +{\mathbb {E}}\int _{0}^{t} \Vert \sigma _{2}(u,v^{u,X})-\sigma _{2}(u,v^{u,Y})\Vert ^{2}ds , \end{aligned} \end{aligned}$$

namely,

$$\begin{aligned} \begin{aligned}&\frac{d}{dt}{\mathbb {E}}\Vert v^{u,X}-v^{u,Y}\Vert ^{2}\\&\quad =2{\mathbb {E}}(v^{u,X}-v^{u,Y},-i(-\partial _{xx})^{\theta }(v^{u,X}-v^{u,Y}) -\lambda v^{u,X}+\lambda v^{u,Y}) \\&\qquad +2{\mathbb {E}}(v^{u,X}-v^{u,Y},-ig(u,v^{u,X})+ig(u,v^{u,Y})) +{\mathbb {E}}\Vert \sigma _{2}(u,v^{u,X})-\sigma _{2}(u,v^{u,Y})\Vert ^{2}\\&\quad \le -2\lambda {\mathbb {E}}\Vert v^{u,X}-v^{u,Y}\Vert ^{2}+2L_{g} {\mathbb {E}}\Vert v^{u,X}-v^{u,Y}\Vert ^{2}+L_{\sigma _{2}}^{2}{\mathbb {E}}\Vert v^{u,X}-v^{u,Y}\Vert ^{2}\\&\quad = (-2\lambda +2L_{g}+L_{\sigma _{2}}^{2}){\mathbb {E}}\Vert v^{u,X}-v^{u,Y}\Vert ^{2} . \end{aligned} \end{aligned}$$

It follows from assumptions (H) that

$$\begin{aligned} \frac{d}{dt}{\mathbb {E}}\Vert v^{u,X}-v^{u,Y}\Vert ^{2} \le -\lambda {\mathbb {E}}\Vert v^{u,X}-v^{u,Y}\Vert ^{2}, \end{aligned}$$

this yields

$$\begin{aligned} {\mathbb {E}}\Vert v^{u,X}-v^{u,Y}\Vert ^{2}\le \Vert X-Y\Vert ^{2}e^{-\lambda t}. \end{aligned}$$

(2) We shall adopt the remote start method, which is also called a dissipative method, to show the existence of an invariant measure of (4.3). Let v(tsx) be the solution to

$$\begin{aligned} \begin{array}{l} \left\{ \begin{array}{lll} dv=[-i(-\partial _{xx})^{\beta }v-\lambda v-ig(u,v)]dt-i\sigma _{2}(u,v)dB_{2}, \\ v(s)=x, \end{array} \right. \end{array} \begin{array}{lll} \text {in}~{\mathbb {T}}\times [s,T],\\ \text {in}~{\mathbb {T}}, \end{array} \end{aligned}$$

by the same method as in (2.2), we can obtain

$$\begin{aligned} {\mathbb {E}}\Vert v(t,s_{1},x)-v(t,s_{2},x)\Vert ^{2}\le e^{-\lambda (t-s_{2})}{\mathbb {E}}\Vert v(s_{2},s_{1},x)-x\Vert ^{2}, \end{aligned}$$

where \(s_{1}\le s_{2}\le t,\) note the fact \({\mathbb {E}}\Vert v(t,s_{1},x)\Vert ^{2}\le C(1+\Vert x\Vert ^{2}),\) it holds that

$$\begin{aligned} {\mathbb {E}}\Vert v(t,s_{1},x)-v(t,s_{2},x)\Vert ^{2}\le C(1+\Vert x\Vert ^{2})e^{-\lambda (t-s_{2})}. \end{aligned}$$

Letting \(s_{2}\)(hence \(s_{1}\)) tend to \(-\infty ,\) it follows that there exists \(\xi ^{u}(t)\in L^{2}(\Omega ;L^{2}({\mathbb {T}}))\) such that

$$\begin{aligned} \lim \limits _{s\rightarrow -\infty }v(t,s,x)=\xi ^{u}(t). \end{aligned}$$

It follows from (2.2) that \(\xi ^{u}(t)\) is independent of \(x\in L^{2}({\mathbb {T}}).\) For any \(u\in L^{2}({\mathbb {T}}),\) let \(\mu ^{u}={\mathcal {L}}(\xi ^{u}(0)),\) then it is unique invariant measure \(\mu ^{u}\) for the Markov semigroup \(P_{t}^{u}\) associated with the system (4.3) in \(L^{2}({\mathbb {T}})\) such that

$$\begin{aligned} \int _{L^{2}({\mathbb {T}})}P_{t}^{u}\varphi d\mu ^{u}=\int _{L^{2}({\mathbb {T}})}\varphi d\mu ^{u},~~t\ge 0 \end{aligned}$$

for any \(\varphi \in B_{b}(L^{2}({\mathbb {T}}))\) the space of bounded functions on \(L^{2}({\mathbb {T}}).\) It is easy to see that the invariant measure satisfies

$$\begin{aligned} \int _{L^{2}({\mathbb {T}})}\Vert z\Vert ^{2}\mu ^{u}(dz)\le C(1+\Vert u\Vert ^{2}). \end{aligned}$$

(3) According to the invariant property of \(\mu ^{u},\) (2) and (2.2), we have

$$\begin{aligned} \begin{aligned} \Vert {\mathbb {E}}f(u,v^{u,X})-{\bar{f}}(u)\Vert ^{2}=&\Vert {\mathbb {E}}f(u,v^{u,X})-\int _{L^{2}({\mathbb {T}})}f(u,Y)\mu ^{u}(dY)\Vert ^{2} \\ =&\Vert {\mathbb {E}}f(u,v^{u,X})-{\mathbb {E}}\int _{L^{2}({\mathbb {T}})}f(u,v^{u,Y}) \mu ^{u}(dY)\Vert ^{2} \\ =&\Vert \int _{L^{2}({\mathbb {T}})}{\mathbb {E}}[f(u,v^{u,X})-f(u,v^{u,Y})]\mu ^{u}(dY)\Vert ^{2} \\ \le&C\int _{L^{2}({\mathbb {T}})}{\mathbb {E}}\Vert v^{u,X}-v^{u,Y}\Vert ^{2}\mu ^{u}(dY) \\ \le&C\int _{L^{2}({\mathbb {T}})}\Vert X-Y\Vert ^{2}e^{-2\eta t}\mu ^{u}(dY) \\ \le&C(1+\Vert X\Vert ^{2}+\Vert u\Vert ^{2})e^{-2\eta t} . \end{aligned} \end{aligned}$$

\(\square \)

1.2 Proof of Proposition 2.2

Lemma 5.1

For any \((u_{0},v_{0})\in H^{l}({\mathbb {T}})\times L^{2}({\mathbb {T}}),\) (1.1) admits a unique mild solution \((u^{\varepsilon },v^{\varepsilon })\in Y_{\tau _{\infty }},\) where \(\tau _{\infty }\) is stopping time. Moreover, if \(\tau _{\infty }<+\infty ,\) then \({\mathbb {P}}-\)a.s.

$$\begin{aligned} \lim \limits _{t\rightarrow \tau _{\infty }}\Vert (u^{\varepsilon },v^{\varepsilon })\Vert _{X_{t}}=+\infty . \end{aligned}$$

Proof

In this part, we will take

$$\begin{aligned} \varepsilon =1 \end{aligned}$$

for the sake of simplicity, and \((u^{\varepsilon },v^{\varepsilon })\) is denoted by (uv). All the results can be extended without difficulty to the general case. We set

$$\begin{aligned} \begin{aligned}&X_{\tau }=C([0,\tau ];H^{l}({\mathbb {T}}))\times C([0,\tau ];L^{2}({\mathbb {T}})),\\&Y_{\tau }=L^{2}(\Omega ;C([0,\tau ];H^{l}({\mathbb {T}})))\times L^{2}(\Omega ; C([0,\tau ];L^{2}({\mathbb {T}}))). \end{aligned} \end{aligned}$$

Let \(\rho \in C^{\infty }_{0}({\mathbb {R}})\) be a cut-off function such that \(\rho (r)=1\) for \(r\in [0,1]\) and \(\rho (r)=0\) for \(r\ge 2.\) For any \(R>0,y\in H^{l}({\mathbb {T}}),\) we set \(\rho _{R}(y)=\rho (\frac{\Vert y\Vert _{H^{l}({\mathbb {T}})}}{R}).\) The truncated equation corresponding to (1.1) is the following stochastic partial differential equations:

$$\begin{aligned} \begin{array}{l} \left\{ \begin{array}{llll} du+(u_{x}+u_{xxx}+\rho _{R}(u)uu_{x})dt=f(u,v)dt+\sigma _{1}(u)dB_{1}\\ dv+i(-\partial _{xx})^{\theta }v dt=[-\lambda v-ig(u,v)]dt-i\sigma _{2}(u,v)dB_{2}\\ u(x,0)=u_{0}(x), ~v(x,0)=v_{0}(x) \end{array} \right. \end{array} \begin{array}{lll} \mathrm{{in}}~{\mathbb {T}}\times (0,T)\\ \mathrm{{in}}~{\mathbb {T}}\times (0,T)\\ \mathrm{{in}}~{\mathbb {T}}. \end{array} \end{aligned}$$
(5.1)

We define

$$\begin{aligned}&\Phi _{R}(u(t),v(t)) \\&\quad =\left( \begin{array}{c} \Phi _{R}^{1}(u(t),v(t))\\ \Phi _{R}^{2}(u(t),v(t)) \end{array}\right) \\&\quad =\left( \begin{array}{c} S_{\alpha }(t)u_{0}+\int _{0}^{t}S_{\alpha }(t-s)[-\rho _{R}(u)(s)u(s) u_{x}(s)+f(u(s),v(s))]ds +\int _{0}^{t}S_{\alpha }(t-s)\sigma _{1} (u(s))dB_{1} \\ G_{\theta }(t)v_{0}+\int _{0}^{t}G_{\theta }(t-s)[-\lambda v-ig(u(s),v(s))] ds-\int _{0}^{t}G_{\theta }(t-s)i\sigma _{2}(u,v)dB_{2} \end{array}\right) . \end{aligned}$$

It is easy to see that for any \(T_{0}>0,\) operator \(\Phi _{R}(u,v)\) maps \(X_{T_{0}}\) into itself.

\(\bullet \) The estimate of \({\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert \Phi _{R}^{1}(u_{1},v_{1})(t)-\Phi _{R}^{1}(u_{2},v_{2})(t)\Vert _{H^{l}}^{2}.\)

Indeed, we set \(F(u)=uu_{x}.\) Noting the fact for

$$\begin{aligned} \begin{aligned} \Vert u_{1}u_{1x}-u_{2}u_{2x}\Vert =&\Vert u_{1}(u_{1}-u_{2})_{x}+(u_{1}-u_{2})u_{2x}\Vert \\ \le&C(\Vert u_{1}\Vert _{H^{1}}+\Vert u_{2}\Vert _{H^{1}})\Vert u_{1}-u_{2}\Vert _{H^{1}} \\ \le&C(\Vert u_{1}\Vert _{H^{l}}+\Vert u_{2}\Vert _{H^{l}})\Vert u_{1}-u_{2}\Vert _{H^{l}}. \end{aligned} \end{aligned}$$

Set \(F_{R}(u)=F(u)\rho _{R}(u).\) Assume that \(\Vert u_{1}\Vert _{H^{l}}\ge \Vert u_{2}\Vert _{H^{l}},\) we have without any loss of generality,

$$\begin{aligned}&\Vert F_{R}(u_{1})-F_{R}(u_{2})\Vert \\&\quad =\Vert (F(u_{1})-F(u_{2}))\rho _{R}(u_{1})+(\rho _{R}(u_{1})-\rho _{R}(u_{2}))F(u_{2})\Vert \\&\quad \le \Vert (F(u_{1})-F(u_{2}))\rho _{R}(u_{1})\Vert +\Vert (\rho _{R}(u_{1})-\rho _{R}(u_{2}))F(u_{2})\Vert \\&\quad =\Vert (F(u_{1})-F(u_{2}))\rho _{R}(u_{1})\Vert +\Vert (\rho _{R}(u_{1})-\rho _{R}(u_{2}))F(u_{2})\Vert \chi _{\{\Vert u_{2}\Vert _{H^{l}}\le 2R\}}\\&\quad \le \Vert (F(u_{1})-F(u_{2}))\rho _{R}(u_{1})\Vert +|\rho _{R}(u_{1})-\rho _{R}(u_{2})|\Vert F(u_{2})\Vert \chi _{\{\Vert u_{2}\Vert _{H^{l}}\le 2R\}}\\&\quad \le C\Vert u_{1}-u_{2}\Vert _{H^{l}}(\Vert u_{1}\Vert _{H^{l}}+\Vert u_{2}\Vert _{H^{1}})\chi _{\{\Vert u_{1}\Vert _{H^{l}}\le 2R\}}\\&\quad \quad +\frac{C}{R}\Vert u_{1}-u_{2}\Vert _{L^{\infty }}\Vert F(u_{2})\Vert \chi _{\{\Vert u_{2}\Vert _{H^{l}}\le 2R\}}\\&\quad \le CR\Vert u_{1}-u_{2}\Vert _{H^{l}}+\frac{C}{R}\Vert u_{1}-u_{2}\Vert _{H^{l}}\Vert u_{2}u_{2x}\Vert \chi _{\{\Vert u_{2}\Vert _{H^{l}}\le 2R\}}\\&\quad \le CR\Vert u_{1}-u_{2}\Vert _{H^{l}} +\frac{C}{R}\Vert u_{1}-u_{2}\Vert _{H^{l}}\Vert u_{2}\Vert _{H^{1}}^{2}\chi _{\{\Vert u_{2}\Vert _{H^{l}}\le 2R\}}\\&\quad \le CR\Vert u_{1}-u_{2}\Vert _{H^{l}} +\frac{C}{R}\Vert u_{1}-u_{2}\Vert _{H^{l}}\Vert u_{2}\Vert _{H^{l}}^{2}\chi _{\{\Vert u_{2}\Vert _{H^{l}}\le 2R\}}\\&\quad \le CR\Vert u_{1}-u_{2}\Vert _{H^{l}}. \end{aligned}$$

It follows from (3.1) with \(\gamma =\beta =l\) that

$$\begin{aligned} \begin{aligned}&{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert \int _{0}^{t}S_{\alpha }(t-s)(F_{R}(u_{1})(s) -F_{R}(u_{2})(s))ds\Vert _{H^{l}}^{2} \\&\quad \le C{\mathbb {E}}\sup _{0\le t\le T_{0}}\Big (\int _{0}^{t} (t-s)^{-\frac{l}{2\alpha }}\Vert (F_{R}(u_{1})(s)-F_{R}(u_{2})(s))\Vert ds\Big )^{2} \\&\quad \le C{\mathbb {E}}\sup _{0\le t\le T_{0}}\Big (\int _{0}^{t} (t-s)^{-\frac{l}{2\alpha }}R\Vert u_{1}(s)-u_{2}(s)\Vert _{H^{l}}ds\Big )^{2} \\&\quad \le C R^{2}\sup _{0\le t\le T_{0}}\Big (\int _{0}^{t} (t-s)^{-\frac{l}{2\alpha }}ds\Big )^{2}{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert u_{1}(t)-u_{2}(t)\Vert _{H^{l}}^{2} \\&\quad \le C R^{2}T_{0}^{2-\frac{l}{\alpha }}{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert u_{1}(t)-u_{2}(t)\Vert _{H^{l}}^{2} \end{aligned} \end{aligned}$$
(5.2)

and

$$\begin{aligned}&{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert \int _{0}^{t}S_{\alpha }(t-s) (f(u_{1}(s),v_{1}(s))-f(u_{2}(s),v_{2}(s)))ds\Vert _{H^{l}({\mathbb {T}}) }^{2}\nonumber \\&\quad \le {\mathbb {E}}\sup _{0\le t\le T_{0}}\Big (\int _{0}^{t}\Vert S_{\alpha } (t-s)(f(u_{1}(s),v_{1}(s))-f(u_{2}(s),v_{2}(s)))\Vert _{H^{l}}ds\Big )^{2}\nonumber \\&\quad \le C{\mathbb {E}}\sup _{0\le t\le T_{0}}\Big (\int _{0}^{t} (t-s)^{-\frac{l}{2\alpha }}\Vert (f(u_{1}(s),v_{1}(s))-f(u_{2}(s),v_{2}(s)))\Vert ds\Big )^{2}\nonumber \\&\quad \le C{\mathbb {E}}\sup _{0\le t\le T_{0}}\Big (\int _{0}^{t} (t-s)^{-\frac{l}{2\alpha }}(\Vert u_{1}(s)-u_{2}(s)\Vert +\Vert v_{1}(s)-v_{2}(s)\Vert )ds\Big )^{2} \nonumber \\&\quad \le C \sup _{0\le t\le T_{0}}\Big (\int _{0}^{t} (t-s)^{-\frac{l}{2\alpha }}ds\Big )^{2}\Big ({\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert u_{1}(t)-u_{2}(t)\Vert ^{2}+{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert v_{1}(t)-v_{2}(t)\Vert ^{2}\Big )\nonumber \\&\quad \le C T_{0}^{2-\frac{l}{\alpha }} \Big ({\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert u_{1}(t)-u_{2}(t)\Vert ^{2}+{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert v_{1}(t)-v_{2}(t)\Vert ^{2}\Big ). \end{aligned}$$
(5.3)

It follows from (3.15) with \(\rho =l,p=1\) that

$$\begin{aligned}&{\mathbb {E}}\sup \limits _{t\in [0,T_{0}]}\Vert \int _{0}^{t}S_{\alpha }(t-s) [\sigma _{1}(u_{1}(s))-\sigma _{1}(u_{2}(s))]dB_{1}\Vert _{H^{l}}^{2}\nonumber \\&\quad \le C(p,T){\mathbb {E}}\int _{0}^{T_{0}}\Vert \sigma _{1}(u_{1}(s))- \sigma _{1}(u_{2}(s))\Vert _{H^{l}}^{2}dt\nonumber \\&\quad \le C(p,T){\mathbb {E}}\int _{0}^{T_{0}}\Vert u_{1}(s)-u_{2}(s)\Vert _{H^{l}}^{2}dt\nonumber \\&\quad \le C(p,T)T_{0}{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert u_{1}(t)-u_{2}(t)\Vert _{H^{l}}^{2}. \end{aligned}$$
(5.4)

Finally, collecting the above estimates (5.2)–(5.4), we get

$$\begin{aligned} \begin{aligned}&{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert \Phi _{R}^{1}(u_{1},v_{1})(t) -\Phi _{R}^{1}(u_{2},v_{2})(t)\Vert _{H^{l}}^{2}\\&\quad \le C(R^{2}T_{0}^{2-\frac{l}{\alpha }} +T_{0}^{2-\frac{l}{\alpha }}+T_{0}) \\&\qquad \Big ({\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert u_{1}(t)-u_{2}(t)\Vert _{H^{l}}^{2}+{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert v_{1}(t)-v_{2}(t)\Vert ^{2}\Big ). \end{aligned} \end{aligned}$$
(5.5)

\(\bullet \) The estimate of \({\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert \Phi _{R}^{2}(u_{1},v_{1})(t)-\Phi _{R}^{2}(u_{2},v_{2})(t)\Vert ^{2}.\)

Indeed, we have

$$\begin{aligned}&{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert \int _{0}^{t}G_{\theta }(t-s) (-\lambda v_{1}-ig(u_{1}(s),v_{1}(s))+\lambda v_{2}+ig(u_{2}(s),v_{2}(s)))ds\Vert ^{2}\\&\quad \le {\mathbb {E}}\sup _{0\le t\le T_{0}}\Big (\int _{0}^{t}\Vert G_{\theta } (t-s)(-\lambda v_{1}-ig(u_{1}(s),v_{1}(s))+\lambda v_{2}+ig(u_{2}(s),v_{2}(s)))\Vert ds\Big )^{2} \\&\quad \le C{\mathbb {E}}\sup _{0\le t\le T_{0}}\Big (\int _{0}^{t}\Vert -\lambda v_{1}-ig(u_{1}(s),v_{1}(s))+\lambda v_{2}+ig(u_{2}(s),v_{2}(s))\Vert ds\Big )^{2}\\&\quad \le C{\mathbb {E}}\sup _{0\le t\le T_{0}}\Big (\int _{0}^{t} (\Vert u_{1}(s)-u_{2}(s)\Vert +\Vert v_{1}(s)-v_{2}(s)\Vert )ds\Big )^{2}\\&\quad \le C \int _{0}^{T_{0}}\Big ({\mathbb {E}}\sup _{0\le t\le T_{0}} \Vert u_{1}(t)-u_{2}(t)\Vert ^{2}+{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert v_{1}(t)-v_{2}(t)\Vert ^{2}\Big )ds\\&\quad \le C T_{0}\Big ({\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert u_{1}(t) -u_{2}(t)\Vert ^{2}+{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert v_{1}(t)-v_{2}(t)\Vert ^{2}\Big ). \end{aligned}$$

It follows from Proposition 3.3 with \(\rho =0\) that

$$\begin{aligned} \begin{aligned}&{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert \int _{0}^{t}G_{\theta }(t-s) (-i\sigma _{2}(u_{1}(s),v_{1}(s))+i\sigma _{2}(u_{2}(s),v_{2}(s)))dB_{2}\Vert ^{2}\\&\quad \le C{\mathbb {E}}\int _{0}^{T_{0}}\Vert G_{\theta }(t-s)(\sigma _{2} (u_{1}(s),v_{1}(s))-\sigma _{2}(u_{2}(s),v_{2}(s)))\Vert ^{2}ds\\&\quad \le C{\mathbb {E}}\int _{0}^{T_{0}}\Vert \sigma _{2}(u_{1}(s),v_{1}(s)) -\sigma _{2}(u_{2}(s),v_{2}(s))\Vert ^{2}ds\\&\quad \le C{\mathbb {E}}\int _{0}^{T_{0}}(\Vert u_{1}(s)-u_{2}(s)\Vert ^{2}+ \Vert v_{1}(s)-v_{2}(s)\Vert ^{2})ds\\&\quad \le C T_{0}\Big ({\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert u_{1}(t) -u_{2}(t)\Vert ^{2}+{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert v_{1}(t)-v_{2}(t)\Vert ^{2}\Big ). \end{aligned} \end{aligned}$$

This implies that

$$\begin{aligned} \begin{aligned}&{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert \Phi _{R}^{2}(u_{1},v_{1})(t)- \Phi _{R}^{2}(u_{2},v_{2})(t)\Vert ^{2}\\&\quad \quad \le CT_{0}\Big ({\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert u_{1}(t)-u_{2}(t)\Vert _{H^{l}}^{2}+{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert v_{1}(t)-v_{2}(t)\Vert ^{2}\Big ). \end{aligned} \end{aligned}$$
(5.6)

\(\bullet \) The estimate of \(\Vert \Phi _{R}(u_{1},v_{1})-\Phi _{R}(u_{2},v_{2})\Vert _{Y_{T_{0}}}.\)

Indeed, it follows from (5.5) and (5.6) that

$$\begin{aligned} \begin{aligned}&{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert \Phi _{R}^{1}(u_{1},v_{1}) (t)-\Phi _{R}^{1}(u_{2},v_{2})(t)\Vert _{H^{l}}^{2}+{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert \Phi _{R}^{2}(u_{1},v_{1})(t)-\Phi _{R}^{2}(u_{2},v_{2})(t)\Vert ^{2}\\&\quad \le C(R^{2}T_{0}^{2-\frac{l}{\alpha }} +T_{0}^{2-\frac{l}{\alpha }}+ T_{0})\Big ({\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert u_{1}(t)-u_{2}(t)\Vert _{H^{l}}^{2}+{\mathbb {E}}\sup _{0\le t\le T_{0}}\Vert v_{1}(t)-v_{2}(t)\Vert ^{2}\Big ), \end{aligned} \end{aligned}$$

namely, we have

$$\begin{aligned} \begin{aligned} \Vert \Phi _{R}(u_{1},v_{1})-\Phi _{R}(u_{2},v_{2})\Vert _{Y_{T_{0}}} \le C(R^{2}T_{0}^{2-\frac{l}{\alpha }} +T_{0}^{2-\frac{l}{\alpha }} +T_{0})^{\frac{1}{2}}\Vert (u_{1},v_{1})-(u_{2},v_{2})\Vert _{Y_{T_{0}}}. \end{aligned}\nonumber \\ \end{aligned}$$
(5.7)

For a sufficiently small \(T_{0},\) \(\Phi _{R}(u,v)\) is a contraction mapping on \(Y_{T_{0}}.\)

Hence, by applying the Banach contraction principle, \(\Phi _{R}(u,v)\) has a unique fixed point in \(Y_{T_{0}},\) which is the unique local solution to (5.1) on the interval \([0,T_{0}].\) Since \(T_{0}\) does not depend on the initial value \((u_{0},v_{0}),\) this solution may be extended to the whole interval [0, T].

We denote by \((u_{R},v_{R})\) this unique mild solution and let

$$\begin{aligned} \begin{aligned} \tau _{R}=\inf \{t\ge 0:\Vert (u_{R},v_{R})\Vert _{X_{t}}\ge R\}, \end{aligned} \end{aligned}$$

with the usual convention that \(\inf \emptyset =\infty .\)

Since \(R_{1}\le R_{2},\) \(\tau _{{R}_{1}}\le \tau _{{R}_{2}},\) we can put \(\tau _{\infty }=\lim \limits _{R\rightarrow +\infty }\tau _{R}.\) Set \(\tau =\tau _{R_{1}}\wedge \tau _{R_{2}}.\) We define a local solution to (1.1) as follows

$$ u(t)=u_{R}(t),~\forall ~ t\in [0,\tau _{R}],~~v(t)=v_{R}(t),~\forall ~t\in [0,\tau _{R}]. $$

Proceeding as in the proof of (5.7), we can obtain that \(\Vert (u_{R_{1}},v_{R_{1}})-(u_{R_{2}},v_{R_{2}})\Vert _{Y_{t}}\le C(t)\Vert (u_{R_{1}},v_{R_{1}})-(u_{R_{2}},v_{R_{2}})\Vert _{Y_{t}}\), where C(t) is a monotonically increasing function and \(C(0)=0.\) If we take t sufficiently small, we can obtain \(u_{R_{1}}(t)=u_{R_{2}}(t),v_{R_{1}}(t)=v_{R_{2}}(t).\) Repeating the same argument for the interval [t, 2t] and so on yields \(u_{R_{1}}(t)=u_{R_{2}}(t),v_{R_{1}}(t)=v_{R_{2}}(t),\) for the whole interval \([0,\tau ].\) According to this, we can know the above definition of local solution to (1.1) is well defined.

If \(\tau _{\infty }<+\infty ,\) the definition of (uv) yields \({\mathbb {P}}-\)a.s.

$$\begin{aligned} \lim \limits _{t\rightarrow \tau _{\infty }}\Vert (u,v)\Vert _{X_{t}}=+\infty , \end{aligned}$$

which shows that (uv) is the unique local solution to (1.1) on the interval \([0,\tau _{\infty }).\)

This completes the proof of Lemma 5.1. \(\square \)

First, we shall prove uniform bounds with respect to \(\varepsilon \in (0,1)\) for \(p-\)moment of the solution for (1.1).

Lemma 5.2

For any \(u_{0},v_{0}\in L^{2}({\mathbb {T}})\), \(p>0\), there exists a constant C(pT) such that

$$\begin{aligned} \sup \limits _{\varepsilon \in (0,1)}\sup \limits _{t\in [0,T]}{\mathbb {E}} \Vert u^{\varepsilon }(t)\Vert ^{2p}\le C(p,T),~~\sup \limits _{\varepsilon \in (0,1)} \sup \limits _{t\in [0,T]}{\mathbb {E}}\Vert v^{\varepsilon }(t)\Vert ^{2p}\le C(p,T). \end{aligned}$$

Proof

It is sufficient to prove this proposition when p is large enough. It is easy to see

$$\begin{aligned} \begin{aligned} dv^{\varepsilon }&=-\frac{i}{\varepsilon }[(-\partial _{xx})^{\theta } v^{\varepsilon }-i\lambda v^{\varepsilon }+g(u^{\varepsilon }, v^{\varepsilon })]dt-\frac{i}{\sqrt{\varepsilon }}\sigma _{2} (u^{\varepsilon },v^{\varepsilon })dB_{2}\\&=-\frac{i}{\varepsilon }(-\partial _{xx})^{\theta }v^{\varepsilon } dt-\frac{1}{\varepsilon }\lambda v^{\varepsilon }dt -\frac{i}{\varepsilon }g(u^{\varepsilon },v^{\varepsilon })dt -\frac{i}{\sqrt{\varepsilon }}\sigma _{2}(u^{\varepsilon },v^{\varepsilon })dB_{2}. \end{aligned} \end{aligned}$$

For \(p\ge 2\), applying Itô formula with \(\Vert v^{\varepsilon }(t)\Vert ^{2p}\), we have

$$\begin{aligned}&{\mathbb {E}}\Vert v^{\varepsilon }(t)\Vert ^{2p} \nonumber \\&\quad =\Vert v_{0}\Vert ^{2p}+\frac{2p}{\varepsilon }{\mathbb {E}}\int _{0}^{t}\Vert v^{\varepsilon }(s)\Vert ^{2p-2}(-i(-\partial _{xx})^{\theta }v^{\varepsilon } (s),v^{\varepsilon }(s)) ds \nonumber \\&\qquad +\frac{2p}{\varepsilon }{\mathbb {E}} \int _{0}^{t}\Vert v^{\varepsilon }(s)\Vert ^{2p-2}(-\lambda v^{\varepsilon } (s),v^{\varepsilon }(s)) ds\nonumber \\&\qquad +\frac{2p}{\varepsilon }{\mathbb {E}}\int _{0}^{t}\Vert v^{\varepsilon }(s) \Vert ^{2p-2}(-ig(u^{\varepsilon }(s),v^{\varepsilon }(s)),v^{\varepsilon }(s))ds\nonumber \\&\qquad +\frac{p}{\varepsilon }{\mathbb {E}}\int _{0}^{t}\Vert v^{\varepsilon }(s) \Vert ^{2p-2}\Vert \sigma _{2}(u^{\varepsilon },v^{\varepsilon })\Vert ^{2}ds\nonumber \\&\qquad +\frac{2p(p-1)}{\varepsilon }{\mathbb {E}}\int _{0}^{t}\Vert v^{\varepsilon } (s)\Vert ^{2p-4} |(\sigma _{2}(u^{\varepsilon },v^{\varepsilon }),v^{\varepsilon }(s))|^{2}ds, \end{aligned}$$
(5.8)

where Itô formula can be understood in the way that we first use the Galerkin approximation to get (5.8) in the finite dimensional setting, then we take the limit of the dimension to obtain (5.8) in the infinite dimensional setting.

It follows from Lemma 2.1 that \((-i(-\partial _{xx})^{\theta }v^{\varepsilon }(s),v^{\varepsilon }(s))=0,\) thus, we have

$$\begin{aligned} \begin{aligned} \frac{d}{dt}{\mathbb {E}}\Vert v^{\varepsilon }\Vert ^{2p} =&-\frac{2p\lambda }{\varepsilon }{\mathbb {E}}\Vert v^{\varepsilon }\Vert ^{2p} +\frac{2p}{\varepsilon }{\mathbb {E}}\Vert v^{\varepsilon }\Vert ^{2p-2} (-ig(u^{\varepsilon },v^{\varepsilon }),v^{\varepsilon }) \\&+\frac{p}{\varepsilon }{\mathbb {E}}\Vert v^{\varepsilon }\Vert ^{2p-2}\Vert \sigma _{2}(u^{\varepsilon },v^{\varepsilon })\Vert ^{2} +\frac{2p(p-1)}{\varepsilon }{\mathbb {E}}\Vert v^{\varepsilon }\Vert ^{2p-4} |(\sigma _{2}(u^{\varepsilon },v^{\varepsilon }),v^{\varepsilon })|^{2}. \end{aligned} \end{aligned}$$

It follows from the property of g that

$$\begin{aligned} \begin{aligned} 2\Vert v^{\varepsilon }(s)\Vert ^{2p-2}(-ig(u^{\varepsilon }(s),v^{\varepsilon }(s)), v^{\varepsilon }(s))&\le 2\Vert v^{\varepsilon }\Vert ^{2p-1}\Vert g(u^{\varepsilon },v^{\varepsilon })\Vert \\&\le 2L_{g}\Vert v^{\varepsilon }(t)\Vert ^{2p-1}(1+\Vert u^{\varepsilon }(t)\Vert +\Vert v^{\varepsilon }(t)\Vert )\\&=2L_{g}\Vert v^{\varepsilon }(t)\Vert ^{2p-1}+2L_{g}\Vert v^{\varepsilon }(t)\Vert ^{2p-1} \Vert u^{\varepsilon }(t)\Vert \\&\quad +2L_{g}\Vert v^{\varepsilon }(t)\Vert ^{2p}. \end{aligned} \end{aligned}$$

According to the Young inequality (see Lemma 2.3), it holds that

$$\begin{aligned} 2L_{g}\Vert v^{\varepsilon }(t)\Vert ^{2p-1}\le 2L_{g}\eta \Vert v^{\varepsilon }(t)\Vert ^{2p}+C(\eta ,L_{g},p), \end{aligned}$$

if we choose \(\eta =\frac{1}{6},\) we have

$$\begin{aligned} 2L_{g}\Vert v^{\varepsilon }(t)\Vert ^{2p-1}\le \frac{ L_{g}}{3}\Vert v^{\varepsilon }(t)\Vert ^{2p}+C(L_{g},p). \end{aligned}$$

By the same method, we have

$$\begin{aligned} 2L_{g}\Vert v^{\varepsilon }(t)\Vert ^{2p-1}\Vert u^{\varepsilon }\Vert \le \frac{ L_{g}}{3}\Vert v^{\varepsilon }(t)\Vert ^{2p}+C(L_{g},p)\Vert u^{\varepsilon }(t)\Vert ^{2p}. \end{aligned}$$

It follows from the property of \(\sigma _{2}\) and the same method as above that

$$\begin{aligned}&\Vert v^{\varepsilon }(t)\Vert ^{2p-2}\Vert \sigma _{2}(u^{\varepsilon }, v^{\varepsilon })\Vert ^{2}+2(p-1)\Vert v^{\varepsilon }(t)\Vert ^{2p-4} (v^{\varepsilon },\sigma _{2}(u^{\varepsilon },v^{\varepsilon }))^{2}\\&\quad \le \frac{ L_{g}}{3}\Vert v^{\varepsilon }(t)\Vert ^{2p}+C(M,p). \end{aligned}$$

Thus, it holds that

$$\begin{aligned} \begin{aligned} \frac{d}{dt}{\mathbb {E}}\Vert v^{\varepsilon }(t)\Vert ^{2p}&\le -\frac{2p\lambda }{\varepsilon }{\mathbb {E}}\Vert v^{\varepsilon }(t)\Vert ^{2p} +\frac{3L_{g}p}{\varepsilon }{\mathbb {E}}\Vert v^{\varepsilon }(t)\Vert ^{2p} +\frac{C}{\varepsilon }{\mathbb {E}}\Vert u^{\varepsilon }(t)\Vert ^{2p} +\frac{C}{\varepsilon } \\&\le -\frac{ p \lambda }{\varepsilon }{\mathbb {E}}\Vert v^{\varepsilon }(t)\Vert ^{2p} +\frac{C}{\varepsilon }{\mathbb {E}}\Vert u^{\varepsilon }(t)\Vert ^{2p}+\frac{C}{\varepsilon } , \end{aligned} \end{aligned}$$

hence, by comparison theorem (see Lemma 2.4), we have

$$\begin{aligned} {\mathbb {E}}\Vert v^{\varepsilon }(t)\Vert ^{2p} \le \Vert v_{0}\Vert ^{2p}e^{-\frac{\lambda p}{\varepsilon } t}+\frac{C}{\varepsilon }\int _{0}^{t}e^{-\frac{\lambda p}{\varepsilon } (t-s)}({\mathbb {E}}\Vert u^{\varepsilon }(s)\Vert ^{2p}+1)ds. \end{aligned}$$
(5.9)

For \(\Vert u^{\varepsilon }(t)\Vert ^{2p}\), by Itô formula again and using Lemma 2.1, the following holds,

$$\begin{aligned} \begin{aligned}&{\mathbb {E}}\Vert u^{\varepsilon }(t)\Vert ^{2p}\\&\quad =\Vert u_{0}\Vert ^{2p}+{\mathbb {E}} \int _{0}^{t}[2p\Vert u^{\varepsilon }\Vert ^{2p-2}(-u^{\varepsilon }_{xxx} -(-\partial _{xx})^{\alpha }u^{\varepsilon }-u^{\varepsilon }u_{x}^{\varepsilon } +f(u^{\varepsilon },v^{\varepsilon }),u^{\varepsilon })\\&\quad \quad +p\Vert u^{\varepsilon }\Vert ^{2p-2}\Vert \sigma _{1}(u^{\varepsilon })\Vert ^{2} +2p(p-1)\Vert u^{\varepsilon }\Vert ^{2p-4}(u^{\varepsilon },\sigma _{1}(u^{\varepsilon }))^{2}]ds\\&\quad =\Vert u_{0}\Vert ^{2p}+{\mathbb {E}}\int _{0}^{t}[2p\Vert u^{\varepsilon }\Vert ^{2p-2} (-\Vert (-\partial _{xx})^{\frac{\alpha }{2}}u^{\varepsilon }\Vert ^{2})+2p\Vert u^{\varepsilon }\Vert ^{2p-2}(f(u^{\varepsilon },v^{\varepsilon }),u^{\varepsilon })\\&\quad \quad +p\Vert u^{\varepsilon }\Vert ^{2p-2}\Vert \sigma _{1}(u^{\varepsilon })\Vert ^{2}+2p(p-1) \Vert u^{\varepsilon }\Vert ^{2p-4}(u^{\varepsilon },\sigma _{1}(u^{\varepsilon }))^{2}]ds, \end{aligned} \end{aligned}$$

then

$$\begin{aligned} \begin{aligned} \frac{d}{dt}{\mathbb {E}}\Vert u^{\varepsilon }(t)\Vert ^{2p}&=2p{\mathbb {E}}\Vert u^{\varepsilon }\Vert ^{2p-2}(-\Vert (-\partial _{xx})^{\frac{\alpha }{2}}u^{\varepsilon }\Vert ^{2}) +2p{\mathbb {E}}\Vert u^{\varepsilon }\Vert ^{2p-2}(f(u^{\varepsilon }, v^{\varepsilon }),u^{\varepsilon }) \\&\quad +p{\mathbb {E}}\Vert u^{\varepsilon }\Vert ^{2p-2}\Vert \sigma _{1}(u^{\varepsilon })\Vert ^{2} \\&\quad +2p(p-1){\mathbb {E}}\Vert u^{\varepsilon }\Vert ^{2p-4}(u^{\varepsilon },\sigma _{1} (u^{\varepsilon }))^{2} \\&\le 2p{\mathbb {E}}\Vert u^{\varepsilon }\Vert ^{2p-2}(C\Vert u^{\varepsilon } \Vert ^{2}+C\Vert v^{\varepsilon }\Vert ^{2}+C)+C(p){\mathbb {E}}\Vert u^{\varepsilon } \Vert ^{2p-2}\Vert \sigma _{1}(u^{\varepsilon })\Vert ^{2}, \end{aligned} \end{aligned}$$

thus, it follows from Young inequality that

$$\begin{aligned} \frac{d}{dt}{\mathbb {E}}\Vert u^{\varepsilon }(t)\Vert ^{2p} \le C({\mathbb {E}}\Vert u^{\varepsilon }(t)\Vert ^{2p}+ {\mathbb {E}}\Vert v^{\varepsilon }(t)\Vert ^{2p}+1), \end{aligned}$$

hence, by comparison theorem (see Lemma 2.4), we have

$$\begin{aligned} {\mathbb {E}}\Vert u^{\varepsilon }(t)\Vert ^{2p} \le e^{Ct}\Vert u_{0}\Vert ^{2p}+C\int _{0}^{t}e^{C (t-s)}({\mathbb {E}}\Vert v^{\varepsilon }(s)\Vert ^{2p}+1)ds. \end{aligned}$$

Plug this inequality into (5.9), we have

$$\begin{aligned} {\mathbb {E}}\Vert v^{\varepsilon }(t)\Vert ^{2p}&\le \Vert v_{0}\Vert ^{2p}e^{-\frac{\lambda p}{\varepsilon } t}+\frac{C}{\varepsilon }\int _{0}^{t}e^{-\frac{\lambda p}{\varepsilon } (t-s)}({\mathbb {E}}\Vert u^{\varepsilon }(s)\Vert ^{2p}+1)ds \\&\le C(1+\Vert v_{0}\Vert ^{2p})+\frac{C}{\varepsilon }\int _{0}^{t}e^{-\frac{\lambda p}{\varepsilon } (t-s)}{\mathbb {E}}\Vert u^{\varepsilon }(s)\Vert ^{2p}ds \\&\le C(1+\Vert v_{0}\Vert ^{2p})+\frac{C}{\varepsilon }\int _{0}^{t}e^{-\frac{\lambda p}{\varepsilon } (t-s)}[e^{Cs}\Vert u_{0}\Vert ^{2p} \\&\quad +C\int _{0}^{s}e^{C (s-\tau )}({\mathbb {E}}\Vert v^{\varepsilon }(\tau )\Vert ^{2p}+1)d\tau ]ds \\&\le C(1+\Vert u_{0}\Vert ^{2p}+\Vert v_{0}\Vert ^{2p})+ \frac{C}{\varepsilon }\int _{0}^{t}e^{-\frac{\lambda p}{\varepsilon } (t-s)} \int _{0}^{s}{\mathbb {E}}\Vert v^{\varepsilon }(\tau )\Vert ^{2p}d\tau ds \\&\le C(p,T,u_{0},v_{0})+\frac{C}{\lambda p}\int _{0}^{t} (1-e^{-\frac{\lambda p}{\varepsilon } (t-\tau )}){\mathbb {E}} \Vert v^{\varepsilon }(\tau )\Vert ^{2p}d\tau \\&\le C(p,T,u_{0},v_{0})+C\int _{0}^{t}{\mathbb {E}}\Vert v^{\varepsilon }(\tau )\Vert ^{2p}d\tau , \end{aligned}$$

it follows from Gronwall inequality that \(\sup \limits _{0\le t\le T}{\mathbb {E}} \Vert v^{\varepsilon }(t)\Vert ^{2p}\le C(p,T,u_{0},v_{0})\), thus, we have

$$ \sup \limits _{0\le t\le T}{\mathbb {E}}\Vert u^{\varepsilon }(t)\Vert ^{2p}\le C(p,T,u_{0},v_{0}). $$

\(\square \)

Next, we will present the estimate on the slow motion \(u^{\varepsilon }\) as a process valued in \(H^{l}({\mathbb {T}})\).

Lemma 5.3

Let \(\tau =\tau _{\infty }\wedge T.\) For any \((u_{0},v_{0})\in H^{l}({\mathbb {T}})\times L^{2}({\mathbb {T}})\) and \(p>0\), we have

$$\begin{aligned}&\sup \limits _{\varepsilon \in (0,1)}{\mathbb {E}}\sup \limits _{t\in [0,\tau ]} \Vert u^{\varepsilon }(t)\Vert _{H^{l}}^{2p}\le C(p,T) \end{aligned}$$
(5.10)
$$\begin{aligned}&{\mathbb {E}}\sup \limits _{t\in [0,\tau ]}\Vert v^{\varepsilon }(t)\Vert ^{2p}\le C(\varepsilon ,p,T). \end{aligned}$$
(5.11)

Proof

It is sufficient to prove (5.10) and (5.11) when p is large enough.

\(\bullet \) We can write the first equation in system (1.1) in its integral form

$$\begin{aligned} \begin{aligned} u^{\varepsilon }(t)=&S_{\alpha }(t)u_{0}-\int _{0}^{t}S_{\alpha }(t-s) (u^{\varepsilon }u^{\varepsilon }_{x})(s)ds+\int _{0}^{t}S_{\alpha } (t-s)f(u^{\varepsilon }(s),v^{\varepsilon }(s))ds \\&+\int _{0}^{t}S_{\alpha }(t-s)\sigma _{1}(u^{\varepsilon }(s))dB_{1} \\ =&I_{1}+I_{2}+I_{3}+I_{4}. \end{aligned} \end{aligned}$$

Indeed, it follows from (3.3) with \(s=l\) that

$$\begin{aligned} \Vert I_{1}\Vert _{H^{l}}^{2p}\le C(p)\Vert u_{0}\Vert _{H^{l}}^{2p}. \end{aligned}$$

It follows from (3.1) with \(\gamma =l,\beta =\frac{l}{4}+\frac{3}{2}\) that

$$\begin{aligned} \Vert I_{2}\Vert _{H^{l}}\le & {} \int _{0}^{t}\Vert S_{\alpha }(t-s)(u^{\varepsilon } u^{\varepsilon }_{x})(s)\Vert _{H^{l}}ds\\\le & {} C(T)\int _{0}^{t}(t-s)^{-\frac{l+6}{8\alpha }}\Vert (u^{\varepsilon } u^{\varepsilon }_{x})(s)\Vert _{H^{\frac{3(l-2)}{4}}}ds\\\le & {} C(T)\int _{0}^{t}(t-s)^{-\frac{l+6}{8\alpha }}\Vert u^{\varepsilon } (s)\Vert _{H^{\frac{l-1}{4}}}\Vert u^{\varepsilon }(s)\Vert _{H^{\frac{l+3}{4}}}ds\\\le & {} C(T)\int _{0}^{t}(t-s)^{-\frac{l+6}{8\alpha }}\Vert u^{\varepsilon } (s)\Vert ^{\frac{3l+1}{4l}}\Vert u^{\varepsilon }(s)\Vert _{H^{l}}^{\frac{l-1}{4l}} \Vert u^{\varepsilon }(s)\Vert ^{\frac{3l-3}{4l}}\Vert u^{\varepsilon } (s)\Vert _{H^{l}}^{\frac{l+3}{4l}}ds\\= & {} C(T)\int _{0}^{t}(t-s)^{-\frac{l+6}{8\alpha }}\Vert u^{\varepsilon } (s)\Vert ^{\frac{3l-1}{2l}}\Vert u^{\varepsilon }(s)\Vert ^{\frac{l+1}{2l}}_{H^{l}}ds, \end{aligned}$$

where we have used Lemma 2.5 for \(\alpha _{1}=\alpha _{2}=\frac{l-1}{4},~\alpha _{3}=\frac{3(2-l)}{4}\) and interpolation inequality

$$\begin{aligned} \Vert u^{\varepsilon }(s)\Vert _{H^{a}}\le C\Vert u^{\varepsilon }(s)\Vert ^{\frac{b-a}{b}} \Vert u^{\varepsilon }(s)\Vert ^{\frac{a}{b}}_{H^{b}}~~\forall ~0\le a\le b. \end{aligned}$$

Then, we can deduce that

$$\begin{aligned} \begin{aligned} {\mathbb {E}}\sup \limits _{t\in [0,\tau ]}\Vert I_{2}\Vert ^{2p}_{H^{l}} \le&C(p,T){\mathbb {E}}\Big (\sup \limits _{t\in [0,\tau ]}\int _{0}^{t} (t-s)^{-\frac{l+6}{8\alpha }} \Vert u^{\varepsilon }(s)\Vert ^{\frac{3l-1}{2l}}\Vert u^{\varepsilon }(s) \Vert ^{\frac{l+1}{2l}}_{H^{l}}ds\Big )^{2p}\\ \le&C(p,T){\mathbb {E}}\Big [\Big (\sup \limits _{t\in [0,\tau ]}\int _{0}^{t} (t-s)^{-\frac{(l+6)p}{4\alpha (2p-1)}}ds\Big )^{2p-1} \\&\qquad \qquad \Big (\sup \limits _{t\in [0,\tau ]}\int _{0}^{t} \Vert u^{\varepsilon }(s)\Vert ^{\frac{(3l-1)p}{l}}\Vert u^{\varepsilon }(s) \Vert ^{\frac{(l+1)p}{l}}_{H^{l}}ds\Big )\Big ]\\ \le&C(p,T)\Big (\int _{0}^{T}s^{-\frac{(l+6)p}{4\alpha (2p-1)}}ds \Big )^{2p-1} \\&\Big (\int _{0}^{T} {\mathbb {E}}\Vert u^{\varepsilon }(s)\Vert ^{\frac{2(3l-1)p}{l-1}}ds +\int _{0}^{T}{\mathbb {E}}\Vert u^{\varepsilon }(s)\Vert ^{2p}_{H^{l}}ds\Big ). \end{aligned} \end{aligned}$$

Taking \(p>\frac{4\alpha }{8\alpha -l-6}\) and using Proposition 2.2, we have

$$\begin{aligned} {\mathbb {E}}\sup \limits _{t\in [0,\tau ]}\Vert I_{2}\Vert ^{2p}_{H^{l}}\le C(p,T)\Big (1+\int _{0}^{T}{\mathbb {E}}\Vert u^{\varepsilon }(s)\Vert ^{2p}_{H^{l}}ds\Big ). \end{aligned}$$

According to (3.1) for \(\beta =\gamma =l\), if \(p>\frac{\alpha }{2\alpha -l},\) we can obtain that

$$\begin{aligned} \begin{aligned} {\mathbb {E}}\sup \limits _{t\in [0,\tau ]}\Vert I_{3}\Vert ^{2p}_{H^{l}} \le&C(p,T){\mathbb {E}}\Big (\sup \limits _{t\in [0,\tau ]}\int _{0}^{t} (t-s)^{-\frac{l}{2\alpha }}\Vert f(u^{\varepsilon }(s),v^{\varepsilon }(s))\Vert ds\Big )^{2p}\\ \le&C(p,T){\mathbb {E}}\Big (\sup \limits _{t\in [0,\tau ]}\int _{0}^{t} (t-s)^{-\frac{l}{2\alpha }}(1+\Vert u^{\varepsilon }(s)\Vert +\Vert v^{\varepsilon }(s)\Vert )ds\Big )^{2p}\\ \le&C(p,T)\Big (\int _{0}^{T}s^{-\frac{ lp}{\alpha (2p-1)}}ds\Big )^{2p-1} \int _{0}^{T}(1+{\mathbb {E}}\Vert u^{\varepsilon }(s)\Vert ^{2p}+{\mathbb {E}} \Vert v^{\varepsilon }(s)\Vert ^{2p})ds\\ \le&C(p,T). \end{aligned} \end{aligned}$$

It follows from Proposition 3.2 with \(\rho =l\) that

$$\begin{aligned} \begin{aligned} {\mathbb {E}}\sup \limits _{t\in [0,T]}\Vert \int _{0}^{t}S_{\alpha }(t-s) \sigma _{1}(u^{\varepsilon }(s))dB_{1}\Vert _{H^{l}}^{2p}&\le C(p){\mathbb {E}}\int _{0}^{T}\Vert \sigma _{1}(u^{\varepsilon }(s)) \Vert _{H^{l}}^{2p}dt\\&\le C(p){\mathbb {E}}\int _{0}^{T}(1+\Vert u^{\varepsilon }(s)\Vert _{H^{l}})^{2p}dt\\&\le C(p,T)\Big (1+{\mathbb {E}}\int _{0}^{T}\Vert u^{\varepsilon } (s)\Vert ^{2p}_{H^{l}}ds\Big ). \end{aligned} \end{aligned}$$

Consequently, we have

$$\begin{aligned} {\mathbb {E}}\sup \limits _{t\in [0,\tau ]}\Vert u^{\varepsilon }(t)\Vert _{H^{l}}^{2p}\le C(p,T)\Big (1+{\mathbb {E}}\int _{0}^{T}\Vert u^{\varepsilon }(s)\Vert ^{2p}_{H^{l}}ds\Big ). \end{aligned}$$

By applying Gronwall’s inequality, we can obtain (5.10).

\(\bullet \) To prove (5.11), noting that

$$\begin{aligned} \begin{aligned} v^{\varepsilon }(t)=&G_{\theta }(\frac{t}{\varepsilon })v_{0} +\frac{i}{\varepsilon }\int _{0}^{t}G_{\theta }\left( \frac{t-s}{\varepsilon }\right) [-\lambda v-ig(u^{\varepsilon }(s),v^{\varepsilon }(s))]ds \\&-\frac{1}{\sqrt{\varepsilon }}\int _{0}^{t}G_{\theta } \left( \frac{t-s}{\varepsilon }\right) i\sigma _{2} (u^{\varepsilon }(s),v^{\varepsilon }(s))dB_{2}\\ =&I_{1}^{\prime }+I_{2}^{\prime }+I_{3}^{\prime }. \end{aligned} \end{aligned}$$

It is clear that

$$\begin{aligned} \begin{aligned}&{\mathbb {E}}\sup _{0\le t\le \tau }\Vert I_{1}^{\prime }\Vert ^{2p}\le C(p,T)\Vert v_{0}\Vert ^{2p}\le C(p,T),\\&{\mathbb {E}}\sup _{0\le t\le \tau }\Vert I_{3}^{\prime }\Vert ^{2p}\le C(\varepsilon ,p,T). \end{aligned} \end{aligned}$$

Now, it is sufficient to estimate \(I_{2}^{\prime }\). Applying Proposition 2.2, we can deduce that

$$\begin{aligned} \begin{aligned} {\mathbb {E}}\sup _{0\le t\le \tau }\Vert I_{2}^{\prime }\Vert ^{2p}\le&C(\varepsilon ,p,T){\mathbb {E}}\sup _{0\le t\le T}\left( \int _{0}^{t}(1+\Vert u^{\varepsilon }(s)\Vert +\Vert v^{\varepsilon }(s)\Vert )ds\right) ^{2p}\\ \le&C(\varepsilon ,p,T)\int _{0}^{T}(1+{\mathbb {E}} \Vert u^{\varepsilon }(s)\Vert ^{2p}+E\Vert v^{\varepsilon }(s)\Vert ^{2p})ds\\ \le&C(\varepsilon ,p,T). \end{aligned} \end{aligned}$$

With the help of the above estimates, we arrive at \({\mathbb {E}}\sup _{0\le t\le \tau }\Vert v^{\varepsilon }(t)\Vert ^{2p}\le C(\varepsilon ,p,T).\)

This completes the proof of (5.11). \(\square \)

Now, we prove Proposition 2.2.

Proof of Proposition 2.2

By Chebyshev inequality, Lemma 5.3 and the definition of \((u^{\varepsilon },v^{\varepsilon })\), we have

$$\begin{aligned} \begin{aligned} {\mathbb {P}}(\{\omega \in \Omega ~|~ \tau _{\infty }(\omega )<+\infty \}) =&\lim \limits _{T\rightarrow +\infty }{\mathbb {P}}(\{\omega \in \Omega ~|~ \tau _{\infty }(\omega )\le T\}) \\ =&\lim \limits _{T\rightarrow +\infty }{\mathbb {P}}(\{\omega \in \Omega ~|~ \tau (\omega )=\tau _{\infty }(\omega )\}) \\ =&\lim \limits _{T\rightarrow +\infty }\lim \limits _{R\rightarrow +\infty }{\mathbb {P}}(\{\omega \in \Omega ~|~ \tau _{R}(\omega )\le \tau (\omega )\}) \\ =&\lim \limits _{T\rightarrow +\infty }\lim \limits _{R\rightarrow +\infty }{\mathbb {P}}(\{\omega \in \Omega ~|~ \Vert (u^{\varepsilon },v^{\varepsilon })\Vert _{X_{\tau }}\ge \Vert (u^{\varepsilon },v^{\varepsilon })\Vert _{X_{\tau _{R}}}\}) \\ =&\lim \limits _{T\rightarrow +\infty }\lim \limits _{R\rightarrow +\infty }{\mathbb {P}}(\{\omega \in \Omega ~|~ \Vert (u^{\varepsilon },v^{\varepsilon })\Vert _{X_{\tau }}\ge R\}) \\ \le&\lim \limits _{T\rightarrow +\infty }\lim \limits _{R\rightarrow +\infty }\frac{\mathbb {{\mathbb {E}}}\Vert (u^{\varepsilon },v^{\varepsilon }) \Vert _{X_{\tau }}^{2}}{R^{2}}=0, \end{aligned} \end{aligned}$$

this shows that \({\mathbb {P}}(\{\omega \in \Omega ~|~ \tau _{\infty }(\omega )=+\infty \})=1,\) namely, \(\tau _{\infty }=+\infty \) \({\mathbb {P}}\)-a.s. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P. Averaging Principle for Multiscale Stochastic Fractional Schrödinger–Korteweg-de Vries System. J Stat Phys 181, 1781–1816 (2020). https://doi.org/10.1007/s10955-020-02645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02645-6

Keywords

Mathematics Subject Classification

Navigation