Skip to main content
Log in

On the local corrosion in a thin layer of electrolyte separating two materials: specific aspects and their contribution to pad-to-disk stiction in automobile brake system

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The stiction phenomenon which results in the adhesion of the brake pad to the disc brake of a vehicle has been investigated from a corrosion point of view. Asbestos-free organic pad that contains copper associated with a cast iron disc was investigated and compared to a model system which consisted in a ceramic pad (chemically inert) associated with the same cast iron disc. The whole system was described as a thin-layer cell of electrolyte and was studied using different electrochemical methods including polarization curves and impedance spectroscopy. The influence of the cell geometry was pointed out, but the corrosion of the system is enhanced due to the presence of copper in the pad. Indeed, the copper dissolves from the pad and redeposits on the disc. This was confirmed by scanning electron microscopy observations and Raman spectroscopy. A mechanism taking into account the thin-layer geometry was then proposed to account for the role of metallic additive (in this case copper) on the corrosion of the disc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rashid A (2014) Overview of disc brakes and related phenomena - a review. Int J Veh Noise Vib 10(4):257–301. https://doi.org/10.1504/ijvnv.2014.065634

    Article  Google Scholar 

  2. Li WY, Yang XF, Wang SR, Xiao JP, Hou QM (2020) Comprehensive analysis on the performance and material of automobile brake discs. Metals 10(3). ARTN 377. https://doi.org/10.3390/met10030377

  3. Österle W, Prietzel C, Kloß H, Dmitriev AI (2010) On the role of copper in brake friction materials. Tribol Int 43(12):2317–2326. https://doi.org/10.1016/j.triboint.2010.08.005

    Article  CAS  Google Scholar 

  4. Kumar M, Bijwe J (2011) Non-asbestos organic (NAO) friction composites: role of copper; its shape and amount. Wear 270(3–4):269–280. https://doi.org/10.1016/j.wear.2010.10.068

    Article  CAS  Google Scholar 

  5. Sanders PG, Xu N, Dalka TM, Maricq MM (2003) Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle tests. Environ Sci Technol 37(18):4060–4069. https://doi.org/10.1021/es034145s

    Article  CAS  PubMed  Google Scholar 

  6. Robere M (2016) Disc brake pad corrosion adhesion: test-to-field issue correlation, and exploration of friction physical properties influence to adhesion break-away force. Paper presented at the SAE technical paper series, 2016-09-18

  7. Passarelli UP, Merlo F, Pellerej D, Buonfico P (2012) Influence of brake pad porosity and hydrophilicity on stiction by corrosion of friction material against gray cast iron rotor. Paper presented at the SAE technical paper series, 2012-09-17

  8. Gweon J, Shin S, Jang H, Lee W, Kim D, Lee K (2018) The factors governing corrosion stiction of brake friction materials to a gray cast iron disc. Paper presented at the SAE technical paper series, 2018-10-05

  9. Rosenfeld IL, Marshakov IK (1964) Mechanism of crevice corrosion. Corrosion 20(4):115t–125t. https://doi.org/10.5006/0010-9312-20.4.115t

    Article  Google Scholar 

  10. Wolfe RC, Weil KG, Pickering HW (2004) Electrochemical probes for metal/electrolyte system characterization during crevice corrosion†. J Phys Chem B 108(38):14298–14304. https://doi.org/10.1021/jp040045c

    Article  CAS  Google Scholar 

  11. Pickering HW (2007) IR voltage in crevices during crevice corrosion and sacrificial cathodic protection. Z Phys Chem 221(11–12):1441–1454. https://doi.org/10.1524/zpch.2007.221.11-12.1441

    Article  CAS  Google Scholar 

  12. Kennell GF, Evitts RW (2009) Crevice corrosion cathodic reactions and crevice scaling laws. Electrochim Acta 54(20):4696–4703. https://doi.org/10.1016/j.electacta.2009.03.080

    Article  CAS  Google Scholar 

  13. Aoyama T, Sugawara Y, Muto I, Hara N (2017) In situ monitoring of crevice corrosion morphology of type 316L stainless steel and repassivation behavior induced by sulfate ions. Corros Sci 127:131–140. https://doi.org/10.1016/j.corsci.2017.08.005

    Article  CAS  Google Scholar 

  14. Pickering HW, Beck FH, Fontana MG (1962) Wedging action of solid corrosion product during stress corrosion of austenitic stainless steels. Corrosion 18(6):230t–239t. https://doi.org/10.5006/0010-9312-18.6.230

    Article  CAS  Google Scholar 

  15. Shahidzadeh N, Desarnaud J (2012) Damage in porous media: role of the kinetics of salt (re)crystallization. Eur Phys J Appl Phys 60(2):24205

    Article  Google Scholar 

  16. Desarnaud J, Bonn D, Shahidzadeh N (2016) The pressure induced by salt crystallization in confinement. Sci Rep 6(1):30856. https://doi.org/10.1038/srep30856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dante RC (2016) Types of friction material formulas. In: Dante RC (ed) Handbook of friction materials and their applications. Woodhead Publishing, Boston, pp 29–54. https://doi.org/10.1016/b978-0-08-100619-1.00003-1

    Chapter  Google Scholar 

  18. Xiao P, Li ZA, Xiong X (2010) Microstructure and tribological properties of 3D needle-punched C/C-SiC brake composites. Solid State Sci 12(4):617–623. https://doi.org/10.1016/j.solidstatesciences.2010.01.014

    Article  CAS  Google Scholar 

  19. Kumar M, Bijwe J (2010) Role of different metallic fillers in non-asbestos organic (NAO) friction composites for controlling sensitivity of coefficient of friction to load and speed. Tribol Int 43(5–6):965–974. https://doi.org/10.1016/j.triboint.2009.12.062

    Article  CAS  Google Scholar 

  20. Djafri M, Bouchetara M, Busch C, Weber S (2014) Effects of humidity and corrosion on the tribological behaviour of the brake disc materials. Wear 321:8–15. https://doi.org/10.1016/j.wear.2014.09.006

    Article  CAS  Google Scholar 

  21. Mirzababaei S, Filip P (2017) Impact of humidity on wear of automotive friction materials. Wear 376:717–726. https://doi.org/10.1016/j.wear.2017.02.020

    Article  CAS  Google Scholar 

  22. Blau PJ, Truhan JJ, Kenik EA (2007) Effects of the exposure to corrosive salts on the frictional behavior of gray cast iron and a titanium-based metal matrix composite. Tribol Int 40(9):1335–1343. https://doi.org/10.1016/j.triboint.2007.02.020

    Article  CAS  Google Scholar 

  23. Nukumizu K, Makizono K, Abe T, Unno M (2007) Influence of rust accumulation on disk rotor on frictional properties of disk brake. Paper presented at the SAE technical paper series, 2007-10-07

  24. Leonardi M, Menapace C, Matejka V, Gialanella S, Straffelini G (2018) Pin-on-disc investigation on copper-free friction materials dry sliding against cast iron. Tribol Int 119:73–81. https://doi.org/10.1016/j.triboint.2017.10.037

    Article  CAS  Google Scholar 

  25. Park CW, Shin MW, Jang H (2014) Friction-induced stick-slip intensified by corrosion of gray iron brake disc. Wear 309(1–2):89–95. https://doi.org/10.1016/j.wear.2013.11.008

    Article  CAS  Google Scholar 

  26. Cho KH, Han JM, Jang H, Kim SJ, Lee JY, Park HD, Oh JS, Lim JD (2005) Corrosion induced brake torque variation: the effect from gray iron microstructure and friction materials. Paper presented at the SAE technical paper series, 2005-10-09

  27. Fiaud C, Keddam M, Kadri A, Takenouti H (1987) Electrochemical impedance in a thin surface electrolyte layer - influence of the potential probe location. Electrochim Acta 32(3):445–448. https://doi.org/10.1016/0013-4686(87)85011-9

    Article  CAS  Google Scholar 

  28. Remita E, Boughrara A, Tribollet B, Vivier V, Sutter E, Ropital F, Kittel J (2008) Diffusion impedance in a thin-layer cell: experimental and theoretical study on a large-disk electrode. J Phys Chem C 112(12):4626–4634. https://doi.org/10.1021/jp710407a

    Article  CAS  Google Scholar 

  29. Dante RC (2016) Metals. Handbook of Friction Materials and their Applications, In, pp 123–134. https://doi.org/10.1016/b978-0-08-100619-1.00009-2

    Book  Google Scholar 

  30. Österle W, Urban I (2004) Friction layers and friction films on PMC brake pads. Wear 257(1–2):215–226. https://doi.org/10.1016/j.wear.2003.12.017

    Article  CAS  Google Scholar 

  31. Federici M, Gialanella S, Leonardi M, Perricone G, Straffelini G (2018) A preliminary investigation on the use of the pin-on-disc test to simulate off-brake friction and wear characteristics of friction materials. Wear 410:202–209. https://doi.org/10.1016/j.wear.2018.07.011

    Article  CAS  Google Scholar 

  32. Chandra Verma P, Menapace L, Bonfanti A, Ciudin R, Gialanella S, Straffelini G (2015) Braking pad-disc system: wear mechanisms and formation of wear fragments. Wear 322-323:251–258. https://doi.org/10.1016/j.wear.2014.11.019

    Article  CAS  Google Scholar 

  33. Dante RC (2016) Friction materials. In: Dante RC (ed) Handbook of friction materials and their applications. Woodhead Publishing, Boston, pp 1–6. https://doi.org/10.1016/b978-0-08-100619-1.00001-8

    Chapter  Google Scholar 

  34. King F, Quinn MJ, Litke CD (1995) Oxygen reduction on copper in neutral NaCl solution. J Electroanal Chem 385(1):45–55. https://doi.org/10.1016/0022-0728(94)03705-8

    Article  Google Scholar 

  35. Li F, Han GF, Noh HJ, Kim SJ, Lu YL, Jeong HY, Fu ZP, Baek JB (2018) Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ Sci 11(8):2263–2269. https://doi.org/10.1039/c8ee01169a

    Article  CAS  Google Scholar 

  36. Santos DMF, Sequeira CAC, Figueiredo JL (2013) Hydrogen production by alkaline water electrolysis. Quim Nova 36(8):1176–1193. https://doi.org/10.1590/S0100-40422013000800017

    Article  CAS  Google Scholar 

  37. Ooka H, Figueiredo MC, Koper MTM (2017) Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33(37):9307–9313. https://doi.org/10.1021/acs.langmuir.7b00696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bonnel A, Dabosi F, Deslouis C, Duprat M, Keddam M, Tribollet B (2019) Response to “Comment on ‘corrosion study of a carbon steel in neutral chloride solution by impedance techniques’” [J. Electrochem. Soc., 130, 753]. J Electrochem Soc 132(1):256–256. https://doi.org/10.1149/1.2148671

    Article  Google Scholar 

  39. Lantiat D, Vivier V, Laberty-Robert C, Grosso D, Sanchez C (2010) Gold nanoelectrode arrays and their evaluation by impedance spectroscopy and cyclic voltammetry. Chemphyschem 11(9):1971–1977. https://doi.org/10.1002/cphc.200900929

    Article  CAS  PubMed  Google Scholar 

  40. Caprani A, Deslouis C, Keddam M, Morel P, Tribollet B (1977) Study of partially blocked electrodes by means of electromechanical impedance measurements. Electrochim Acta 22(11):1231–1235. https://doi.org/10.1016/0013-4686(77)87001-1

    Article  CAS  Google Scholar 

  41. Bonnel A, Dabosi F, Deslouis C, Duprat M, Keddam M, Tribollet B (1983) Corrosion study of a carbon-steel in neutral chloride solutions by impedance techniques. J Electrochem Soc 130(4):753–761. https://doi.org/10.1149/1.2119798

    Article  CAS  Google Scholar 

  42. Song Y, Jiang G, Chen Y, Zhao P, Tian Y (2017) Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Sci Rep 7(1):6865. https://doi.org/10.1038/s41598-017-07245-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Keddam M, Mattos OR, Takenouti H (2019) Reaction model for iron dissolution studied by electrode impedance: II . Determination of the reaction model. J Electrochem Soc 128(2):266–274. https://doi.org/10.1149/1.2127402

    Article  Google Scholar 

  44. Keddam M, Mottos OR, Takenouti H (2019) Reaction model for iron dissolution studied by electrode impedance: I . Experimental results and reaction model. J Electrochem Soc 128(2):257–266. https://doi.org/10.1149/1.2127401

    Article  Google Scholar 

  45. Debbichi L, de Lucas MCM, Pierson JF, Kruger P (2012) Vibrational properties of CuO and Cu4O3 from first-principles calculations, and Raman and infrared spectroscopy. J Phys Chem C 116(18):10232–10237. https://doi.org/10.1021/jp303096m

    Article  CAS  Google Scholar 

  46. Bouchard M, Smith DC (2003) Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim Acta A Mol Biomol Spectrosc 59(10):2247–2266. https://doi.org/10.1016/S1386-1425(03)00069-6

    Article  CAS  PubMed  Google Scholar 

  47. Kear G, Barker BD, Walsh FC (2004) Electrochemical corrosion of unalloyed copper in chloride media - a critical review. Corros Sci 46(1):109–135. https://doi.org/10.1016/S0010-938x(02)00257-3

    Article  CAS  Google Scholar 

  48. Bianchi G, Fiori G, Longhi P, Mazza F (1978) “Horse shoe” corrosion of copper alloys in flowing sea water: mechanism, and possibility of cathodic protection of condenser tubes in power stations. Corrosion 34(11):396–406. https://doi.org/10.5006/0010-9312-34.11.396

    Article  CAS  Google Scholar 

  49. Deslouis C, Tribollet B, Mengoli G, Musiani MM (1988) Electrochemical behaviour of copper in neutral aerated chloride solution. II. Impedance investigation. J Appl Electrochem 18(3):384–393. https://doi.org/10.1007/bf01093752

    Article  CAS  Google Scholar 

  50. Deslouis C, Tribollet B, Mengoli G, Musiani MM (1988) Electrochemical behaviour of copper in neutral aerated chloride solution. I. Steady-state investigation. J Appl Electrochem 18(3):374–383. https://doi.org/10.1007/bf01093751

    Article  CAS  Google Scholar 

  51. Wood RJK, Hutton SP, Schiffrin DJ (1990) Mass transfer effects of non-cavitating seawater on the corrosion of Cu and 70Cu-30Ni. Corros Sci 30(12):1177–1201. https://doi.org/10.1016/0010-938x(90)90198-e

    Article  CAS  Google Scholar 

  52. Liao XN, Cao FH, Zheng LY, Liu WJ, Chen AN, Zhang JQ, Cao CA (2011) Corrosion behaviour of copper under chloride-containing thin electrolyte layer. Corros Sci 53(10):3289–3298. https://doi.org/10.1016/j.corsci.2011.06.004

    Article  CAS  Google Scholar 

Download references

Funding

Rafik Tigane received a financial support from Hitachi Automotive Systems and CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireille Turmine.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tigane, R., Bauwens, D., Hude, O. et al. On the local corrosion in a thin layer of electrolyte separating two materials: specific aspects and their contribution to pad-to-disk stiction in automobile brake system. J Solid State Electrochem 25, 895–904 (2021). https://doi.org/10.1007/s10008-020-04867-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04867-w

Keywords

Navigation