Skip to main content
Log in

Effect of pH on the electrochemical properties of polyaniline nanoparticle suspension in strongly acidic solution: an experimental and theoretical study

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A stable suspension of nanopolyaniline (nPANI) particles can be used in various applications instead of a polyaniline film. The electrochemical behavior of a stable suspension of nPANI particles, in strongly acidic conditions of HCl at the gold electrode surface, was investigated using various electrochemical and surface analysis methods. Voltammetry results showed two redox transformations indicating the adsorption and diffusion-controlled mechanism of nPANI particles. Moreover, the decrease in pH causes an increase in the number of electrons transferred per nPANI particles. The adsorption data were fitted by the Langmuir adsorption isotherm and the maximum surface coverage decreases with the increment of pH. The adsorption of nPANI particles was confirmed by the surface analysis methods. Moreover, the quantum chemical calculation and Monte Carlo simulation approved the electrochemical results for the effect of pH on the adsorption of nPANI particles at the gold electrode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34(8):783–810

    Article  CAS  Google Scholar 

  2. Boeva ZA, Sergeyev VG (2014) Polyaniline: synthesis, properties, and application. Polym Sci Ser C 56(1):144–153

    Article  CAS  Google Scholar 

  3. Marjanović GĆ (2013) Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synth Met 177:1–47

    Article  CAS  Google Scholar 

  4. Soni A, Pandey CM, Pandey MK, Sumana G (2019) Highly efficient polyaniline-MoS2 hybrid nanostructures based biosensor for cancer biomarker detection. Anal Chim Acta 1055:26–35

    Article  CAS  PubMed  Google Scholar 

  5. Singh S, Solanki PR, Pandey MK, Malhotra BD (2006) Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor. Anal Chim Acta 568(1-2):126–132

    Article  CAS  PubMed  Google Scholar 

  6. Ardakani MM, Mohseni MAS, Alibeik MA (2013) Fabrication of an electrochemical sensor based on nanostructured polyaniline doped with tungstophosphoric acid for simultaneous determination of low concentrations of norepinephrine, acetaminophen and folic acid. J Mol Liq 178:63–69

    Article  CAS  Google Scholar 

  7. Jain R, Tiwari DC, Karolia P (2014) Electrocatalytic detection and quantification of Nitazoxanide based on graphene- polyaniline (Grp-Pani) nanocomposite sensor. J Electrochem Soc 161(12):H839–H844

    Article  CAS  Google Scholar 

  8. Xu H, Zhang J, Chen Y, Lu H, Zhuang J (2014) Electrochemical polymerization of polyaniline doped with Zn2+ as the electrode material for electrochemical supercapacitors. J Solid State Electrochem 18(3):813–819

    Article  CAS  Google Scholar 

  9. Asen P, Shahrokhian S, Zad AI (2018) Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications. J Solid State Electrochem 22(4):983–996

    Article  CAS  Google Scholar 

  10. Wang H, Ma L, Gan M, Zhou T, Sun X, Dai W, Wang H, Wang S (2016) Synthesis of polyaniline/HF partially etched-hierarchical porous TiO2 microspheres composite with high electrochemical performance for supercapacitors. J Solid State Electrochem 20(2):525–532

    Article  CAS  Google Scholar 

  11. Ghanbari K, Mousavi MF, Shamsipur M (2006) Preparation of polyaniline nanofibers and their use as a cathode of aqueous rechargeable batteries. Electrochim Acta 52(4):1514–1522

    Article  CAS  Google Scholar 

  12. Wang Z, Han J, Zhang N, Sun D, Han T (2019) Synthesis of polyaniline/graphene composite and its application in zinc-rechargeable batteries. J Solid State Electrochem 23(12):3373–3382

    Article  CAS  Google Scholar 

  13. Tallman DE, Spinks G, Dominis A, Wallace GG (2002) Electroactive conducting polymers for corrosion control Part 1. General introduction and a review of non-ferrous metals. J Solid State Electrochem 6(2):73–84

    Article  CAS  Google Scholar 

  14. Kosseoglou D, Kokkinofta R, Sazou D (2011) FTIR spectroscopic characterization of Nafion®–polyaniline composite films employed for the corrosion control of stainless steel. J Solid State Electrochem 15(11-12):2619–2631

    Article  CAS  Google Scholar 

  15. Yano J, Muta A, Harima Y, Kitani A (2011) Poly(2,5-dimethoxyaniline) film coating for corrosion protection of iron. J Solid State Electrochem 15(3):601–605

    Article  CAS  Google Scholar 

  16. Chen J, Hong X, Zhao Y, Xia Y, Li D, Zhang Q (2013) Preparation of flake-like polyaniline/montmorillonite nanocomposites and their application for removal of Cr(VI) ions in aqueous solution. J Mater Sci 48(21):7708–7717

    Article  CAS  Google Scholar 

  17. Javadian H, Ghaemy M, Taghavi M (2014) Adsorption kinetics, isotherm, and thermodynamics of Hg2+ to polyaniline/hexagonal mesoporous silica nanocomposite in water/wastewater. J Mater Sci 49(1):232–242

    Article  CAS  Google Scholar 

  18. Chiang JC, MacDiarmid AG (1986) Polyaniline: protonic acid doping of the emeraldine form to the metallic regime. Synth Met 13(1-3):193–205

    Article  CAS  Google Scholar 

  19. MacDiarmid AG, Epstein AJ (1989) Polyanilines: a novel class of conducting polymers. Faraday Discuss Chem Soc 88:317–332

    Article  CAS  Google Scholar 

  20. Huang WS, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Farad T 1(82):2385–2400

    Article  Google Scholar 

  21. Trivedi D (1998) Influence of the anion on polyaniline. J Solid State Electrochem 2(2):85–87

    Article  CAS  Google Scholar 

  22. Ray A, Richter AF, MacDiarmid AG (1989) Polyaniline: protonation/deprotonation of amine and imine sites. Synth Met 29:l51–l56

    Article  Google Scholar 

  23. Scotto J, Florit MI, Posadas D (2018) Redox commuting properties of polyaniline in hydrochloric, sulphuric and perchloric acid solutions. J Electroanal Chem 817:160–166

    Article  CAS  Google Scholar 

  24. Kalaji M, Nyholm L, Peter LM (1991) A microelectrode study of the influence of pH and solution composition on the electrochemical behaviour of polyaniline films. J Electroanal Chem 313(1-2):271–289

    Article  CAS  Google Scholar 

  25. Yan R, Jin B, Li D, Qian C, Tan X (2017) Temperature dependence of hydrogen bond in the redox process of polyaniline. J Electrochem Soc 164(7):H521–H525

    Article  CAS  Google Scholar 

  26. Gao M, Yang Y, Diao M, Wang S, Wang X, Zhang G, Zhang G (2011) Exceptional ion-exchange selectivity for perchlorate based on polyaniline films. Electrochim Acta 56(22):7644–7650

    Article  CAS  Google Scholar 

  27. Hao Q, Lei W, Xia X, Yan Z, Yang X, Lu L, Wang X (2010) Exchange of counter anions in electropolymerized polyaniline films. Electrochim Acta 55(3):632–640

    Article  CAS  Google Scholar 

  28. Scotto J, Flori MI, Posadas D (2016) pH dependence of the voltammetric response of Polyaniline. J Electroanal Chem 785:14–19

    Article  CAS  Google Scholar 

  29. Ping Z, Nauer GE, Neugebauer H, Theiner J, Neckel A (1997) Protonation and electrochemical redox doping processes of polyaniline in aqueous solutions: investigations using in situ FTIR-ATR spectroscopy and a new doping system. J Chem Soc Farad T 1(93):121–129

    Article  Google Scholar 

  30. Nazari H, Arefinia R (2019) Electrochemical and quantum chemical study of polyaniline nanoparticles suspension in HCl and H2SO4. Electrochim Acta 320:134553

    Article  CAS  Google Scholar 

  31. Nazari H, Arefinia R (2019) Electrochemical behavior of polyaniline nanoparticles suspension: adsorption and diffusion. J Mol Liq 288:110999

    Article  CAS  Google Scholar 

  32. Nazari H, Arefinia R (2019) An investigation into the relationship between the electrical conductivity and particle size of polyaniline in nano scale. Int J Polym Anal Ch 24(2):178–190

    Article  CAS  Google Scholar 

  33. David TMS, Arasho W, Smith O, Hong K, Bonner C, Sun SS (2017) Self-assembly and charge transport of a conjugated polymer on ITO substrates. Polym Sci 3:1–8

    Article  Google Scholar 

  34. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications. John Wiley & Sons, New York 

  35. Arefinia R, Shojaei A, Shariatpanahi H, Neshati J (2012) Anticorrosion properties of smart coating based on polyaniline nanoparticles/epoxy-ester system. Prog Org Coat 75(4):502–508

    Article  CAS  Google Scholar 

  36. Hunter RJ (1981) Zeta potential in colloid science. Academic Press, New York

    Google Scholar 

  37. Wan M (1992) Absorption spectra of thin film of polyanilin. J Polym Sci A Polym Chem 30(4):543–549

    Article  CAS  Google Scholar 

  38. Stejskal J, Kratochvíl P, Radhakrishnan N (1993) Polyaniline dispersions 2. UV—Vis absorption spectra. Synth Met 61(3):225–231

    Article  CAS  Google Scholar 

  39. Aoki K, Chen J, Ke Q, Armes SP, Randall DP (2003) Redox reactions of polyaniline-coated latex suspensions. Langmuir 19(13):5511–5516

    Article  CAS  Google Scholar 

  40. Park HW, Kim T, Huh J, Kang M, Lee JE, Yoon H (2012) Anisotropic growth control of polyaniline nanostructures and their morphology-dependent electrochemical characteristics. ACS Nano 6(9):7624–7633

    Article  CAS  PubMed  Google Scholar 

  41. Pruneanu S, Veress E, Marian I, Oniciu L (1999) Characterization of polyaniline by cyclic voltammetry and UV-Vis absorption spectroscopy. J Mater Sci 34(11):2733–2739

    Article  CAS  Google Scholar 

  42. Liu J, Zhu G, Li X, McAuley CB, Sokolov SV, Compton RG (2017) Quantifying charge transfer to nanostructures: polyaniline nanotubes. Appl Mater Today 7:239–245

    Article  Google Scholar 

  43. Lei T, Aoki K (2000) Monodispersed redox submicrometer particles created by polyaniline-coated polystyrene latex. J Electroanal Chem 482(2):149–155

    Article  Google Scholar 

  44. Wopschall RH, Shain I (1967) Effects of adsorption of electroactive species in stationary electrode polarography. Anal Chem 39(13):1514–1527

    Article  CAS  Google Scholar 

  45. Marmisollé WA, Florit MI, Posadas D (2013) Coupling between proton binding and redox potential in electrochemically active macromolecules. The example of Polyaniline. J Electroanal Chem 707:43–51

    Article  CAS  Google Scholar 

  46. Marmisolle´ WA, Florit MI, Posadas D (2010) The coupling among electron transfer, deformation, screening and binding in electrochemically active macromolecules. Phys Chem Chem Phys 12(27):7536–7544

    Article  PubMed  CAS  Google Scholar 

  47. Pauliukaite R, Brett CMA, Monkman AP (2004) Polyaniline fibres as electrodes. Electrochemical characterisation in acid solutions. Electrochim Acta 50:159–167

    CAS  Google Scholar 

  48. Dlugosz AP, Socha A, Rynkowski J (2017) Electrochemical reactions of sodium 2-ethylhexyl sulfate salt. Electrocatalysis 8(3):270–278

    Article  CAS  Google Scholar 

  49. Ni JA, Ju HX, Chen HY, Leech D (1999) Amperometric determination of epinephrine with an osmium complex and nafion double-layer membrane modified electrode. Anal Chim Acta 378(1-3):151–157

    Article  CAS  Google Scholar 

  50. Santos DMF, Sequeira CAC (2010) Cyclic voltammetry investigation of borohydride oxidation at a gold electrode. Electrochim Acta 55(22):6775–6781

    Article  CAS  Google Scholar 

  51. Ngamchuea K, Eloul S, Tschulik K, Compton RG (2014) Planar diffusion to macro disc electrodes—what electrode size is required for the Cottrell and Randles-Sevcik equations to apply quantitatively? J Solid State Electrochem 18(12):3251–3258

    Article  CAS  Google Scholar 

  52. Brownson DAC, Banks CE (2014) The handbook of graphene electrochemistry. Springer, London

  53. Eklund JC, Bond AM, Alden JA, Compton RG (1999) Perspectives in modern voltammetry: basic concepts and mechanistic analysis. Adv Phys Org Chem 32:1–120

    CAS  Google Scholar 

  54. Aoki K, Lei T (2000) Electrochemical event of single redox latex particles. Langmuir 16(26):10069–10075

    Article  CAS  Google Scholar 

  55. Beasley CA, Murray RW (2009) Voltammetry and redox charge storage capacity of ferrocene-functionalized silica nanoparticles. Langmuir 25(17):10370–10375

    Article  CAS  PubMed  Google Scholar 

  56. Inzelt G (2000) Simultaneous chronoamperometric and quartz crystal microbalance studies of redox transformations of polyaniline films. Electrochim Acta 45(22-23):3865–3876

    Article  CAS  Google Scholar 

  57. Zhang L, Dong S (2004) The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid. J Electroanal Chem 568:189–194

    Article  CAS  Google Scholar 

  58. Ybarra G, Moina C, Florit MI, Posadas D (2000) Proton exchange during the redox switching of polyaniline film electrodes. Electrochem Solid-State Lett 3:330–332

    Article  CAS  Google Scholar 

  59. Farcas M, Cosman NP, Ting DK, Roscoe SG, Omanovic S (2010) A comparative study of electrochemical techniques in investigating the adsorption behaviour of fibrinogen on platinum. J Electroanal Chem 649(1-2):206–218

    Article  CAS  Google Scholar 

  60. Jackson DR, Omanovic S, Roscoe SG (2000) Electrochemical studies of the adsorption behavior of serum proteins on titanium. Langmuir 16(12):5449–5457

    Article  CAS  Google Scholar 

  61. Heydari H, Talebian M, Salarvand Z, Raeissi K, Bagheri M, Golozar MA (2018) Comparison of two Schiff bases containing O-methyl and nitro substitutes for corrosion inhibiting of mild steel in 1 M HCl solution. J Mol Liq 254:177–187

    Article  CAS  Google Scholar 

  62. Haddad MNE (2016) Inhibitive action and adsorption behavior of cefotaxime drug at copper/hydrochloric acid interface: electrochemical, surface and quantum chemical studies. RSC Adv 6(63):57844–57853

    Article  Google Scholar 

  63. Jeyaprabha C, Sathiyanarayanan S, Venkatachari G (2005) Co-adsorption effect of polyaniline and halide ions on the corrosion of iron in 0.5 M H2SO4 solutions. J Electroanal Chem 583(2):232–240

    Article  CAS  Google Scholar 

  64. Aoki K, Baars A, Jaworski A, Osteryoung J (1999) Chronoamperometry of strong acids without supporting electrolyte. J Electroanal Chem 472(1):1–6

    Article  CAS  Google Scholar 

  65. Denuault G, Mirkin MV, Bard AJ (1991) Direct determination of diffusion coefficients by chronoamperometry at microdisk electrodes. J Electroanal Chem 308(1-2):27–38

    Article  CAS  Google Scholar 

  66. Levi M, Markevich E, Aurbach D (2005) Comparison between Cottrell diffusion and moving boundary models for determination of the chemical diffusion coefficients in ion-insertion electrodes. Electrochim Acta 51(1):98–110

    Article  CAS  Google Scholar 

  67. Kwon O, McKee ML (2000) Calculations of band gaps in polyaniline from theoretical studies of oligomers. J Phys Chem B 104(8):1686–1694

    Article  CAS  Google Scholar 

  68. Gece G (2008) The use of quantum chemical methods in corrosion inhibitor studies. Corros Sci 50(11):2981–2992

    Article  CAS  Google Scholar 

  69. Qiang Y, Guo L, Zhang S, Li W, Yu S, Tan J (2016) Synergistic effect of tartaric acid with 2, 6-diaminopyridine on the corrosion inhibition of mild steel in 0.5 M HCl. Sci Rep 6(1):33305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guo L, Zhu S, Zhang S, He Q, Li W (2014) Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium. Corros Sci 87:366–375

    Article  CAS  Google Scholar 

  71. Khaled KF (2009) Monte Carlo simulations of corrosion inhibition of mild steel in 0.5 M sulphuric acid by some green corrosion inhibitors. J Solid State Electrochem 13(11):1743–1756

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We highly appreciate Khorasan Razavi Gas Co. for their provision of laboratory facilities for conducting the experiments required in this research study. And, we hereby acknowledge that part of this computation was performed on the HPC center of the Ferdowsi University of Mashhad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Arefinia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biabangard, F., Nazari, H. & Arefinia, R. Effect of pH on the electrochemical properties of polyaniline nanoparticle suspension in strongly acidic solution: an experimental and theoretical study. J Solid State Electrochem 25, 881–893 (2021). https://doi.org/10.1007/s10008-020-04863-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04863-0

Keywords

Navigation