Skip to main content
Log in

Designed poly(ethylene glycol) conjugate-erbium-doped magnetic nanoparticle hybrid carrier: enhanced activity of anticancer drug

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnetic drug carriers are aimed at transporting the loaded drugs to the target site with the application of an external field. To realize this, a clever design of magnetic nanoparticles and their surface modification have to be achieved. Herein, we report the synthesis of ErFeO3 nanoparticles and their magnetic characteristics. In addition, we report a β-cyclodextrin-polyethylene glycol-folate conjugate and utilize it for coating the magnetic nanoparticles. The crystallinity and grain size of the nanoparticles are characterized using X-ray diffraction. The elemental composition of the nanoparticles and their orbital states are determined using XPS spectroscopy. The polymer-coated nanoparticles are soft ferromagnetic. The anticancer drug, camptothecin, is loaded on the polymer-coated nanoparticles with a loading percentage of about 88%. The efficacy of camptothecin gets enhanced when loaded on the magnetic nanocarrier and released in a sustained manner. Compared to the free form, the drug loaded on the nanocarrier shows an enhanced anticancer activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hodgins NO, Wang JT, Al-Jamal KT (2017) Nanotechnology based carriers for nitrogen-containing bisphosphonates delivery as sensitizers of γδ cells for anticancer immunotherapy. Adv Drug Deliv Rev 114:143–160. https://doi.org/10.1016/j.addr.2017.07.003

    Article  CAS  Google Scholar 

  2. Dey C, Baishya K, Ghosh A, Goswami MM, Ghosh A, Mandal K (2017) Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles. J Magn Magn Mater 427:168–174. https://doi.org/10.1016/j.jmmm.2016.11.024

    Article  CAS  Google Scholar 

  3. Wang D, Liu B, Ma Y, Wu C, Mou Q, Deng H, Wang R, Yan D, Zhang C, Zhu X (2017) A molecular recognition approach to synthesize nucleoside analogue based multifunctional nanoparticles for targeted cancer therapy. J Am Chem Soc 139:14021–14024. https://doi.org/10.1021/jacs.7b08303

    Article  CAS  Google Scholar 

  4. Ramasamy S, Enoch IVMV, Rajkumar SRJ (2020) Polymeric cyclodextrin-dextran spooled nickel ferrite nanoparticles: expanded anticancer efficacy of loaded camptothecin. Mater Lett 261:127114. https://doi.org/10.1016/j.matlet.2019.127114

    Article  CAS  Google Scholar 

  5. Hariharan MS, Sivaraj R, Ponsubha S, Jagadeesh R, Enoch IVMV (2019) 5-Fluorouracil-loaded β-cyclodextrin- carrying polymeric poly(methylmethacrylate)-coated samarium ferrite nanoparticles and their anticancer activity. J Mater Sci 54:4942–4951. https://doi.org/10.1007/s10853-018-3161-z

    Article  CAS  Google Scholar 

  6. Liu J, Zhang K, Shi J, Zhang Z (2019) A magnetic drug delivery system with “OFF-ON” state via specific molecular recognition and conformational changes for precise tumor therapy. Adv Healthc Mater 9:1901316. https://doi.org/10.1002/adhm.201901316

    Article  CAS  Google Scholar 

  7. Selvam R, Ramasamy S, Mohiyuddin S, Enoch IVMV, Gopinath P, Filimonov D (2018) Molecular encapsulator–appended poly(vinyl alcohol) shroud on ferrite nanoparticles. Augmented cancer–drug loading and anticancer property. Mater Sci Eng C 93:125–133. https://doi.org/10.1016/j.msec.2018.07.058

    Article  CAS  Google Scholar 

  8. Norris MD, Seidel K, Kirschning A (2019) Externally induced drug release systems with magnetic nanoparticle carriers: an emerging field in nanomedicine. Adv Ther 2:1800092. https://doi.org/10.1002/adtp.201800092

    Article  Google Scholar 

  9. Woldrum HS, Larsen KL, Madsen F (2008) Cyclodextrin controlled release of poorly water-soluble drugs from hydrogels. Drug Deliv 15:69–80. https://doi.org/10.1080/10717540701829267

    Article  CAS  Google Scholar 

  10. Veish O, Gunn J, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304. https://doi.org/10.1016/j.addr.2009.11.002

    Article  CAS  Google Scholar 

  11. Moros M, Hernaez B, Garet E, Dias J, Saez B, Grazu V, Gonzalez-Fernandez A, Alonso CA, de la Fuente J (2012) Monosaccharaides versus PEG-functionalized NPs influence in the cellular uptake. ACS Nano 6:1565–1577. https://doi.org/10.1021/nn204543c

    Article  CAS  Google Scholar 

  12. Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernandez S, de la Fuente JM, Nienhaus GU, Parak WJ (2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9:6996–7008. https://doi.org/10.1021/acsnano.5b01326

    Article  CAS  Google Scholar 

  13. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102. https://doi.org/10.1016/j.ijpharm.2005.10.010

    Article  CAS  Google Scholar 

  14. Ghaznavi H, Hosseini-Nami S, Kamrava SK, Irajirad R, Maleki S, Shakeri-Zadeh A, Montazerabadi A (2018) Folic acid-conjugated PEG coated gold-iron oxide core-shell nanocomplex as a potential agent for targeted photothermal therapy of cancer. Artif Cell Nanomed Biotechnol 46:1594–1604. https://doi.org/10.1080/21691401.2017.1384384

    Article  CAS  Google Scholar 

  15. Angelopoulou A, Kolokithas-Ntoukas A, Fytas C, Avgoutakis K (2019) Folic acid-functionalized for targeted delivery of doxorubicin to tumor cancer cells overexpressing the folate receptor. ACS Omega 4:22214–22227. https://doi.org/10.1021/acsomega.9b03594

    Article  CAS  Google Scholar 

  16. Sivaraj R, Rajkumar SRJ, Enoch IVMV (2018) Folate-molecular encapsulator–tethered biocompatible polymer grafted with magnetic nanoparticles for augmented drug delivery. Artif Cell Nanomed Biotechnol 46:675–682. https://doi.org/10.1080/21691401.2018.1468340

    Article  CAS  Google Scholar 

  17. Natesan S, Sowrirajan C, Dhanaraj P, Enoch IVMV (2014) Capping of silybin with β-cyclodextrin influences its binding with bovine serum albumin: a study by fluorescence spectroscopy and molecular modeling. Bull Korean Chem Soc 35:2114–2122. https://doi.org/10.5012/bkcs.2014.35.7.2114

    Article  CAS  Google Scholar 

  18. Yousuf S, Sudha N, Murugesan G, Enoch IVMV (2013) Isolation of Prunin from the fruit shell of Bixa orellana and the effect of β-cyclodextrin on its binding with calf thymus DNA. Carbohydr Res 365:46–51. https://doi.org/10.1016/j.carres.2012.10.003

    Article  CAS  Google Scholar 

  19. Enoch IVMV, Sivaraj R, Mohiyuddin S, Gopinath P, Manoharan R (2018) Cyclodextrin–PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release. Appl Nanosci 8:273–284. https://doi.org/10.1007/s13204-018-0798-5

    Article  CAS  Google Scholar 

  20. Gaweda W, Osial M, Zuk M, Pekala M, Bilewicz A, Krysinski P (2020) Lanthanide-doped SPIONs bioconjugation with Trastuzumab for potential multimodal anticancer activity and magnetic hyperthermia. Nanomaterials 10:288. https://doi.org/10.3390/nano10020288

    Article  CAS  Google Scholar 

  21. Ulbrich K, Hola K, Subr V, Bakandritos A, Tucek J, Zboril R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116:5338–5431. https://doi.org/10.1021/acs.chemrev.5b00589

    Article  CAS  Google Scholar 

  22. Xue W, Liu Y, Zhang N, Yao Y, Ma P, Wen H, Huang S, Luo Y, Fan H (2018) Effects of core size and PEG coating layer of iron oxide nanoparticles on the distribution and metabolism in mice. Int J Nanomed 13:5719–5731. https://doi.org/10.2147/IJN.S165451

    Article  CAS  Google Scholar 

  23. Zhu A, Yuan L, Jin W, Dai S, Wang Q, Xue Z, Qin A (2009) Polysaccharide surface modified Fe3O4 nanoparticles for camptothecin loading and release. Acta Biomater 5:1489–1498. https://doi.org/10.1016/j.actbio.2008.10.022

    Article  CAS  Google Scholar 

  24. Justus JS, Roy SDD, Raj AME (2016) Influence of lanthanum doping on the structural and optical properties of hematite nanopowders. JASEM 2:272–277

    Google Scholar 

  25. Bhat R, Qayoom M, Dhar GN, Want B (2019) Improved dielectric, conductivity and magnetic properties of erbium doped α-Fe2O3 nanoparticles. J Mater Sci Mater Electron 30:20914–20934. https://doi.org/10.1007/s10854-019-02398-3

    Article  CAS  Google Scholar 

  26. Mittemeijer EJ, Welzel U (2008) The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Z fur Krist 223:552–560. https://doi.org/10.1524/zkri.2008.1213

    Article  CAS  Google Scholar 

  27. Bosca M, Pop L, Borodi G, Pascuta P, Culea E (2009) XRD and FTIR structural investigations of erbium-doped bismuth–lead–silver glasses and glass ceramics. J Alloy Compd 479:579–582. https://doi.org/10.1016/j.jallcom.2009.01.001

    Article  CAS  Google Scholar 

  28. Wagner CD, Riggs WM, Davis LE, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie

    Google Scholar 

  29. Alsmadi AM, Bsoul I, Mahmood SH, Alnawashi G, Prokeš K, Siemensmeyer K, Klemke B, Nakotte H (2013) Magnetic study of M-type doped barium hexaferrite nanocrystalline particles. J Appl Phys 24:24910. https://doi.org/10.1063/1.4858383

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors express gratitude to the Board of Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the project (No. 37(2)/14/17/2018-BRNS/37147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel V. M. V. Enoch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaliyamoorthi, K., Sumohan Pillai, A., Alexander, A. et al. Designed poly(ethylene glycol) conjugate-erbium-doped magnetic nanoparticle hybrid carrier: enhanced activity of anticancer drug. J Mater Sci 56, 3925–3934 (2021). https://doi.org/10.1007/s10853-020-05466-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05466-w

Navigation