Skip to main content
Log in

Effects of Yttrium on the Microstructure and Corrosion Behavior of Pb-39Mg-10Al-1B-Y Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Pb-39Mg-10Al-1B-Y alloys with Y = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 (wt.%) were fabricated by melting and casting. The microstructure and electrochemical corrosion behavior of the Pb-39Mg-10Al-1B-Y alloys in a 3.5 wt.% NaCl solution were investigated using x-ray diffraction, electron probe microanalysis, and scanning electron microscopy, polarization curve tests, electrochemical impedance spectroscopy (EIS), and electrochemical noise (EN). Mg2Pb + Pb eutectic gains are refined, and the distribution of Mg17Al12 + Mg eutectic gains becomes continuous by with the addition of Y. The polarization curves, EIS results and EN results show that the corrosion resistance of the alloys with various Y concentrations is in the order 0.8 > 1 > 0.6 > 0.4 > 0.2 > 0. The primary corrosion behaviors of Pb-39Mg-10Al-1B-Y alloys when Y ≤ 0.4 wt.% and Y > 0.4 wt.% are general corrosion and localized corrosion, respectively. There is a Mg-Mg2Pb galvanic cell present with Mg2Pb as the cathode and Mg as the anode. Moreover, Cl can accelerate the corrosion of the Mg phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.H. El-Kateb, R.A.M. Rizk, and A.M. Abdul-Kader, Determination of Atomic Cross-sections and Effective Atomic Numbers for Some Alloys, Ann. Nucl. Energy, 2000, 27, p 1333–1343

    CAS  Google Scholar 

  2. O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, and M.R. Kaçal, An Extensive Investigation on Gamma Ray Shielding Features of Pd/Ag-Based Alloys, Nucl. Eng. Technol., 2019, 51, p 853–859

    CAS  Google Scholar 

  3. K. Singh, S. Singh, A.S. Dhaliwal, and G. Singh, Gamma Radiation Shielding Analysis of Lead-Flyash Concretes, Appl. Radiat. Isotopes, 2015, 95, p 174–179

    CAS  Google Scholar 

  4. T. Kaur, J. Sharma, and T. Singh, Thickness OPTIMIZATION of Sn-Pb Alloys for Experimentally Measuring Mass Attenuation Coefficients, Nucl. Eng. Technol., 2017, 3, p 1–5

    CAS  Google Scholar 

  5. M.H. Kharita, S. Yousef, and M. AlNassar, Review on the Addition of Boron Compounds to Radiation Shielding Concrete, Prog. Nucl. Energy, 2011, 53, p 207–211

    CAS  Google Scholar 

  6. J.W. Seong and W.J. Kim, Development of Biodegradable Mg-Ca Alloy Sheets with Enhanced Strength and Corrosion Properties Through the Refinement and Uniform Dispersion of the Mg2Ca Phase by High-Ratio Differential Speed Rolling, Acta Biomater., 2015, 11, p 531–542

    CAS  Google Scholar 

  7. R. Kawalla, M. Ullmann, C. Schmidt, J. Dembińska, and H.P. Vogt, Properties of Magnesium Strips Produced by Twin-Roll-Casting and Hot Rolling, Mater. Sci. Forum, 2011, 690, p 21–24

    CAS  Google Scholar 

  8. Z. Bian, I. Bayandorian, H.W. Zhang, G. Scamans, and Z. Fan, Extremely Fine and Uniform Microstructure of Magnesium AZ91D Alloy Sheets Produced by Melt Conditioned Twin Roll Casting, Mater. Sci. Tech-Lond, 2009, 25, p 599–606

    CAS  Google Scholar 

  9. S. Kaur and K.J. Singh, Ann. Nucl. Energy, 2014, 63, p 350

    CAS  Google Scholar 

  10. R.S. Kaundal, S. Kaur, N. Singh, and K.J. Singh, Investigation of Structural Properties of Lead Strontium Borate Glasses for Gamma-Ray Shielding Applications, J. Phys. Chem. Solids, 2010, 71, p 1191–1195

    CAS  Google Scholar 

  11. V.P. Singh, N.M. Badiger, and J. Kaewkhao, J. Non-Cryst. Solids, 2014, 404, p 167

    CAS  Google Scholar 

  12. M. Bai, Y. Sun, and Y.H. Duan, Corrosion of Novel Pb-Mg-Al-B Nuclear Shielding Alloy in Fluoride Medium, Corros. Eng. Sci. Technol., 2015, 50, p 34–40

    CAS  Google Scholar 

  13. Y.H. Duan, Y. Sun, Z.Z. Guo, and J.H. He, Effects of B on Microstructure and Shielding Properties of Pb-Mg-Al-B Shielding Functional Materials, J. Funct. Mater., 2015, 43, p 334–337

    Google Scholar 

  14. W.Z. Bao, L.K. Bao, D. Liu, D.Y. Qu, Z.Z. Kong, M.J. Peng, and Y.H. Duan, Constitutive Equations, Processing Maps, and Microstructures of Pb-39Mg-10Al-1B-0.4Y Alloy Under Hot Compression, J. Mater. Eng. Perform., 2020, 29, p 607–619

    CAS  Google Scholar 

  15. Y. Zheng, X. Gu, and F. Witte, Biodegradable Metals, Mater. Sci. Eng. Rep., 2014, 77, p 1–34

    Google Scholar 

  16. H.J. Goldschmid, Interstitial Alloys, Springer, Berlin, 2013

    Google Scholar 

  17. J. Liu, D. Bian, Y. Zheng, X. Chu, Y. Lin, M. Wang, Z. Lin, M. Li, Y. Zhang, and S. Guan, Comparative in Vitro Study on Binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) Alloy System, Acta Biomater., 2020, 102, p 508–528

    CAS  Google Scholar 

  18. W. Liu, F. Cao, L. Chang, Z. Zhang, and J. Zhang, Effect of Rare Earth Element Ce and La on Corrosion Behavior of AM60 Magnesium Alloy, Corros. Sci., 2009, 51(6), p 1334–1343

    CAS  Google Scholar 

  19. H.X. Wang, B. Yu, W.W. Wang, G.X. Ren, W. Liang, and J.S. Zhang, Improved Corrosion Resistance of AZ91D Magnesium Alloy by a Zinc-Yttrium Coating, J. Alloys Compd., 2014, 582, p 457–460

    CAS  Google Scholar 

  20. H. Wang, B. Yu, W. Wang, G. Ren, W. Liang, and J. Zhang, Effects of Y2O3 Addition on Microstructure, Mechanical Properties, Electrochemical Behavior, and Resistance to Corrosive Wear of Aluminum, Tribol. Int., 2007, 40, p 188–199

    Google Scholar 

  21. I. Polmear, D. StJohn, J.F. Nie, and M. Qian, Light Alloys, Metallurgy of the Light Metals, Edward Arnold, London, 1989

    Google Scholar 

  22. J. Zheng, Q. Wang, Z. Jin, and T. Peng, Effect of Sm on the Microstructure, Mechanical Properties and Creep Behavior of Mg-05Zn-04Zr Based Alloys, Mater. Sci. Eng. A, 2010, 527, p 1677–1685

    Google Scholar 

  23. F. Mert, C. Blawert, K.U. Kainer, and N. Hort, Influence of Cerium Additions on the Corrosion Behaviour of High Pressure Die Cast AM50 Alloy, Corros. Sci., 2012, 65, p 145–151

    CAS  Google Scholar 

  24. Y.H. Duan, Y. Sun, M.J. Peng, L. Lu, and R.L. Zhao, Electronic Structure and Elastic Properties of Intermetallics Mg2Pb, Chin. J. Nonferrous Metals, 2009, 19, p 1835–1839

    CAS  Google Scholar 

  25. P. Baranek, J. Schamps, and I. Noiret, Ab Initio Studies of Electronic Structure, Phonon Modes, and Elastic Properties of Mg2Si, J. Phys. Chem. B, 1997, 101, p 9147–9152

    CAS  Google Scholar 

  26. W. Feng, S.J. Sun, Y. Bo, F. Zhang, P.L. Mao, and Z. Liu, First Principles Investigation of Binary Intermetallics in Mg-Al-Ca-Sn Alloy: Stability, Electronic Structures, Elastic Properties and Thermodynamic Properties, Trans. Nonferrous Metals Soc. China, 2016, 26, p 203–212

    Google Scholar 

  27. S. Kimura, K. Nakajima, S. Mizoguchi, and H. Hasegawa, In-Situ Observation of the Precipitation of Manganese Sulfide in Low-Carbon Magnesium-Killed Steel, Metall. Mater. Trans. A, 2002, 33, p 427–436

    Google Scholar 

  28. M.B. Yang, M.D. Hou, J. Zhang, and F.S. Pan, Effects of Ce, Y and Gd Additions on As-Cast Microstructure and Mechanical Properties of Mg-3Sn-2Sr Magnesium Alloy, Trans. Nonferrous Met. Soc. China, 2014, 24, p 2497–2506

    CAS  Google Scholar 

  29. J.H. Lee, W.S. Bae, and J.H. Choi, Electrode Reactions and Adsorption/Desorption Performance Related to the Applied Potential in a Capacitive Deionization Process, Desalination, 2010, 258, p 159–163

    CAS  Google Scholar 

  30. D.J. Rogers, S.D. Luck, D.E. Irish, D.A. Guzonas, and G.F. Atkinson, Surface Enhanced Raman Spectroscopy of Pyridine, Pyridinium Ions and Chloride Ions Adsorbed on the Silver Electrode, J. Electroanal. Chem. Interf. Eectrochem., 1984, 167, p 237–249

    CAS  Google Scholar 

  31. I. Ahamed, R. Prasad, and M.A. Quraishi, Thermodynamic, Electrochemical and Quantum Chemical Investigation of Some Schiff Bases as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solutions, Corros. Sci., 2010, 52, p 933–942

    Google Scholar 

  32. B.P. Markhali, R. Naderi, M. Mahdavian, M. Sayebani, and S.Y. Arman, Electrochemical Impedance Spectroscopy and Electrochemical Noise Measurements as Tools to Evaluate Corrosion Inhibition of Azole Compounds on Stainless Steel in Acidic Media, Corros. Sci., 2013, 75, p 269–279

    CAS  Google Scholar 

  33. A. Popova, S. Raicheva, E. Sokolova, and M. Christov, Frequency Dispersion of the Interfacial Impedance at Mild Steel Corrosion in Acid Media in the Presence of Benzimidazole Derivatives, Langmuir, 1996, 12, p 2083–2089

    CAS  Google Scholar 

  34. U. Rammelt and G. Reinhard, The Influence of Surface Roughness on the Impedance Data for Iron Electrodes in Acid Solutions, Corros. Sci., 1987, 4, p 373–382

    Google Scholar 

  35. K. Juttner, Electrochemical Impedance Spectroscopy (EIS) of Corrosion Processes on Inhomogeneous Surfaces, Electrochim. Acta, 1990, 35, p 1501–1508

    Google Scholar 

  36. Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, and Y.X. Qiao, Comparison of the Corrosion Behavior of Pure Titanium and Its Alloys in Fluoride-Containing Sulfuric Acid, Corros. Sci., 2016, 103, p 50–65

    CAS  Google Scholar 

  37. J. Pan, D. Thierry, and C. Leygraf, Electrochemical Impedance Spectroscopy Study of the Passive Oxide Film on Titanium for Implant Application, Electrochim. Acta, 1996, 41, p 1143–1153

    CAS  Google Scholar 

  38. B. Ramezanzadeh, S.Y. Arman, M. Mehdipour, and B.P. Markhali, Analysis of Electrochemical Noise (ECN) Data in Time and Frequency Domain for Comparison Corrosion Inhibition of Some Azole Compounds on Cu in 1.0 M H2SO4 Solution, Appl. Surf. Sci., 2014, 289, p 129–140

    CAS  Google Scholar 

  39. M. Hashimoto, S. Miyajima, and T. Murata, An Experimental Study of Potential Fluctuation During Passive Film Breakdown and Repair on Iron, Corros. Sci., 1992, 33, p 905–915

    CAS  Google Scholar 

  40. Y.F. Cheng, M. Wilmott, and J.L. Luo, Analysis of the Role of Electrode Capacitance on the Initiation of Pits for A516 Carbon Steel by Electrochemical Noise Measurements, Corros. Sci., 1999, 41, p 1245–1256

    CAS  Google Scholar 

  41. F. Mansfeld, Z. Sun, and C.H. Hsu, Electrochemical Noise Analysis (ENA) for Active and Passive Systems in Chloride Media, Electrochim. Acta, 2001, 46, p 3651–3664

    CAS  Google Scholar 

  42. F. Mansfeld, L.T. Han, C.C. Lee, and G. Zhang, Evaluation of Corrosion Protection by Polymer Coatings Using Electrochemical Impedance Spectroscopy and Noise Analysis, Electrochim. Acta, 1998, 43, p 2933–2945

    CAS  Google Scholar 

  43. J.M. Sanchez-Amaya, R.A. Cottis, and F.J. Botana, Shot Noise and Statistical Parameters for the Estimation of Corrosion Mechanisms, Corros. Sci., 2005, 47, p 3280–3299

    CAS  Google Scholar 

  44. T. Zhang, X.L. Liu, Y.W. Shao, G.Z. Meng, and F.H. Wang, Electrochemical Noise Analysis on the Pit Corrosion Susceptibility of Mg-10Gd-2Y-05Zr, AZ91D Alloy and Pure Magnesium Using Stochastic Model, Corros. Sci., 2008, 50, p 3500

    CAS  Google Scholar 

  45. L. Guan, B. Zhang, J.Q. Wang, E.-H. Han, and W. Ke, The Reliability of Electrochemical Noise and Current Transients Characterizing Metastable Pitting of Al-Mg-Si Microelectrodes, Corros. Sci., 2014, 80, p 1–6

    CAS  Google Scholar 

  46. J.C. Uruchurtu and J.L. Dawson, Noise Analysis of Pure Aluminum Under Different Pitting Conditions, Corrosion, 1986, 8, p 113–124

    CAS  Google Scholar 

  47. W.J. Ding, Y.Z. Xiang, J.W. Chang, and Y.H. Peng, Corrosion and Electrochemical Behaviour of Mg-Al and Mg-RE Alloys in NaCl Solution, Chin. J. Nonferrous Met., 2009, 19, p 1713–1719

    CAS  Google Scholar 

  48. Y.H. Duan, Y. Sun, J.H. He, Z.Z. Guo, and D.S. Fang, Corrosion Behavior of As-Cast Pb-Mg-Al Alloys in 3.5% NaCl Solution, Corrosion, 2012, 68, p 822–826

    CAS  Google Scholar 

  49. S. Candan, Effect of SiC Particle Size on Corrosion Behavior of Pressure Infiltrated Al Matrix Composites in a NaCl Solution, Mater. Lett., 2004, 58, p 3601–3605

    CAS  Google Scholar 

  50. S. Candan and E. Candan, Comparative Study on Corrosion Behaviors of Mg-Al-Zn Alloys, Trans. Nonferrous Met. Soc. China, 2018, 28, p 642–650

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Yunnan Ten Thousand Talents Plan Young & Elite Talents Project under Grant No. YNWR-QNBJ-2018-044 and the National Natural Science Foundation of China under Grant No. 51761023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghua Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Bao, W., Bao, L. et al. Effects of Yttrium on the Microstructure and Corrosion Behavior of Pb-39Mg-10Al-1B-Y Alloys. J. of Materi Eng and Perform 30, 77–88 (2021). https://doi.org/10.1007/s11665-020-05317-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05317-4

Keywords

Navigation