Skip to main content
Log in

Improving the Strength of Friction-Stir-Welded Joints of AA1100 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper deals with the experimental analysis of Friction Stir Welding (FSW) of AA1100 aluminum alloy joined by means of a square pin tool. During the process, temperature measurement has been done by means of K-type thermocouples and it has been noticed that the temperature in the advancing side (AS) of the weld is about 20-25 °C higher than its retreating side (RS). The ultimate tensile strength (UTS) of the welded specimen is increased by 20% of the parent material due to the uniform dispersion of silicon particles present within the base material. Microstructural observations revealed finely arranged equiaxed grains in the nugget region of the weld. X-ray diffraction results showed the formation of alumina (Al2O3) in the weld nugget due to high heat generation and exposure to atmospheric oxygen during welding. Residual stress measurement exhibited a M-shaped distribution. The samples joined at low travel speed and high tool rotational speed showed compressive residual stress in the joint region. Residual stress of the material lying below the tool shoulder is found to be tensile in nature. Also, it has been noticed that the residual stress in the AS is superior in magnitude than the RS of the weld specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.Z.H. Khandkar, J.A. Khan, A.P. Reynolds, and M.A. Sutton, Predicting Residual Thermal Stresses in Friction Stir Welded Metals, J. Mater. Process. Technol., 2006, 174(1-3), p 195–203

    Article  CAS  Google Scholar 

  2. J. Zapata, M. Toro, and D. López, Residual Stresses in Friction Stir Dissimilar Welding of Aluminum Alloys, J. Mater. Process. Technol., 2016, 229, p 121–127

    Article  CAS  Google Scholar 

  3. P.J. Withers and H.K.D.H. Bhadeshia, Residual Stress: I. Measurement Techniques, Mater. Sci. Technol., 2001, 17(4), p 355–365

    Article  CAS  Google Scholar 

  4. P.J. Withers and H.K.D.H. Bhadeshia, Residual Stress: II. Nature and Origins, Mater. Sci. Technol., 2001, 17(4), p 366–375

    Article  CAS  Google Scholar 

  5. ANSI/AWS D1.1 Structural Welding Code—Steels, American Welding Society, 2010

  6. G. Buffa, A. Ducato, and L. Fratini, Numerical Procedure for Residual Stresses Prediction in Friction Stir Welding, Finite Elem. Anal. Des., 2011, 47(4), p 470–476

    Article  Google Scholar 

  7. C.A. Charitidis, D.A. Dragatogiannis, E.P. Koumoulos, and I.A. Kartsonakis, Residual Stress and Deformation Mechanism of Friction Stir Welded Aluminum Alloys by Nanoindentation, Mater. Sci. Eng. A, 2012, 540, p 226–234

    Article  CAS  Google Scholar 

  8. C. Liu and X. Yi, Residual Stress Measurement on AA6061-T6 Aluminum Alloy Friction Stir Butt Welds Using Contour Method, Mater. Des., 2013, 46, p 366–371

    Article  CAS  Google Scholar 

  9. M.R. Sonne, C.C. Tutum, J.H. Hattel, A. Simar, and B. Meester, The Effect of Hardening Laws and Thermal Softening on Modeling Residual Stresses in FSW of Aluminum Alloy 2024-T3, J. Mater. Process. Technol., 2013, 213(3), p 477–486

    Article  CAS  Google Scholar 

  10. F. Cioffi, J.I. Hidalgo, R. Fernandez, T. Pirling, B. Fernandez, D. Gesto, I.P. Orench, P. Rey, and G.G. Doncel, Analysis of the Unstressed Lattice Spacing, d0, for the Determination of the Residual Stress in a Friction Stir Welded Plate of an Age-Hardenable Aluminum Alloy—Use of Equilibrium Conditions and a Genetic Algorithm, Acta Mater., 2014, 74, p 189–199

    Article  CAS  Google Scholar 

  11. R.M.F. Paulo, P. Carlone, R.A.F. Valente, F.T. Dias, and G.S. Palazzo, Influence of Friction Stir Welding Residual Stresses on the Compressive Strength of Aluminium Alloy Plates, Thin-Walled Struct., 2014, 74, p 184–190

    Article  Google Scholar 

  12. H.J. Aval, Microstructure and Residual Stress Distributions in Friction Stir Welding of Dissimilar Aluminium Alloys, Mater. Des., 2015, 87, p 405–413

    Article  Google Scholar 

  13. G. Buffa, L. Fratini, G. Marannano, and A. Pasta, Effect of the Mutual Position Between Weld Seam and Reinforcement on the Residual Stress Distribution in Friction Stir Welding of AA6082 Skin and Stringer Structures, Thin-Walled Struct., 2016, 103, p 62–71

    Article  Google Scholar 

  14. C. Garcia, T. Lotz, M. Martinez, A. Artemev, R. Alderliesten, and R. Benedictus, Fatigue Crack Growth in Residual Stress Fields, Int. J. Fatigue, 2016, 87, p 326–338

    Article  CAS  Google Scholar 

  15. T. Sun, M.J. Roy, D. Strong, P.J. Withers, and P.B. Prangnell, Comparison of Residual Stress Distributions in Conventional and Stationary Shoulder High-Strength Aluminum Alloy Friction Stir Welds, J. Mater. Process. Technol., 2017, 242, p 92–100

    Article  CAS  Google Scholar 

  16. H. Yu, B. Zhenga, and X. Lai, A Modeling Study of Welding Stress Induced by Friction Stir Welding, J. Mater. Process. Technol., 2018, 254, p 213–220

    Article  Google Scholar 

  17. J. Fathi, P. Ebrahimzadeh, R. Farasati, and R. Teimouri, Friction Stir Welding of Aluminum 6061-T6 in Presence of Watercooling: Analyzing Mechanical Properties and Residual Stress Distribution, Int. J. Lightweight Mater. Manuf., 2019, 2(2), p 107–115

    Google Scholar 

  18. Y. Zhan, Y. Li, E. Zhang, Y. Ge, and C. Liu, Laser Ultrasonic Technology for Residual Stress Measurement of 7075 Aluminum Alloy Friction Stir Welding, Appl. Acoust., 2019, 145, p 52–59

    Article  Google Scholar 

  19. P. Raja, S. Bojanampati, R. Karthikeyan, and R. Ganithi, Effect of Rotation Speed and Welding Speed on Friction Stir Welding of AA1100 Aluminium Alloy, IOP Conf. Ser. Mater. Sci. Eng., 2018, 346(012060), p 1–7

    Google Scholar 

  20. N.P. Senapati and R.K. Bhoi, Grain Size Optimization Using PSO Technique for Maximum Tensile Strength of Friction Stir-Welded Joints of AA1100 Aluminium, Arab. J. Sci. Eng., 2020, 45, p 5647–5656

    Article  CAS  Google Scholar 

  21. C. Hamilton, M. Kopyściański, O. Senkov, and S. Dymek, A Coupled Thermal/Material Flow Model of Friction Stir Welding Applied to Sc-Modified Aluminum Alloys, Metall. Mater. Trans. A, 2013, 44, p 1730–1740

    Article  CAS  Google Scholar 

  22. A. Ismail, M. Awang, M.A. Rojan, and S.H. Samsudin, The Characteristic of Temperature Curves for Friction Stir Welding of Aluminium Alloy 6063-T6 Pipe during Tool Plunging Stage, Presented at International Conference on Mechanical, Manufacturing and Process Plant Engineering at Kuala Lumpur, ARPN J. Eng. Appl. Sci., 2016, 11(1), p 277–280

    CAS  Google Scholar 

  23. I. Kalemba-Rec, C. Hamilton, M. Kopyściański, D. Miara, and K. Krasnowski, Microstructure and Mechanical Properties of Friction Stir Welded 5083 and 7075 Aluminum Alloys, J. Mater. Eng. Perform., 2017, 26, p 1032–1043

    Article  CAS  Google Scholar 

  24. P.H. Shah and V. Badheka, An Experimental Investigation of Temperature Distribution and Joint Properties of Al 7075 T651 Friction Stir Welded Aluminium Alloys, Presented at 3rd International Conference on Innovations in Automation and Mechatronics Engineering, ICIAME 2016, Procedia Technol., 2016, 23, p 543–550

    Article  Google Scholar 

  25. C. Hamilton, S. Dymek, and O. Senkov, Characterisation of Friction Stir Welded 7042-T6 Extrusions through Differential Scanning Calorimetry, Sci. Technol. Weld. Join., 2012, 17(1), p 42–48

    Article  CAS  Google Scholar 

  26. S. Verma, Meenu, and J.P. Misra, Study on Temperature Distribution during Friction Stir Welding of 6082 Aluminum alloy, Presented at 5th International Conference of Materials Processing and Characterization (ICMPC 2016), Mater. Today Proc., 2017, 4(2), p 1350–1356

    Article  Google Scholar 

  27. M.A. Sutton, B. Yang, A.P. Reynolds, and R. Taylor, Microstructural Studies of Friction Stir Welds in 2024-T3 Aluminium, Mater. Sci. Eng. A, 2002, 323(1–2), p 160–166

    Article  Google Scholar 

  28. H.J. Liu, H. Fujii, M. Maeda, and K. Nogi, Mechanical Properties of Friction Stir Welded Joints of 1050–H24 Aluminium Alloy, Sci. Technol. Weld. Join., 2003, 8(6), p 450–454

    Article  Google Scholar 

  29. F.F. Wang, W.Y. Li, J. Shen, S.Y. Hu, and J. Santos, Effect of Tool Rotational Speed on the Microstructure and Mechanical Properties of Bobbin Tool Friction Stir Welding of Al–Li Alloy, Mater. Des., 2015, 86, p 933–940

    Article  CAS  Google Scholar 

  30. Z.L. Hu, X.S. Wang, and S.J. Yuan, Quantitative Investigation of the Tensile Plastic Deformation Characteristic and Microstructure for Friction Stir Welded 2024 Aluminum Alloy, Mater. Charact., 2012, 73, p 114–123

    Article  CAS  Google Scholar 

  31. K. Nakata, Y.G. Kim, H. Fujii, T. Tsumura, and T. Komazaki, Improvement of Mechanical Properties of Aluminum Die Casting Alloy by Multi-pass Friction Stir Processing, Mater. Sci. Eng. A, 2006, 437(2), p 274–280

    Article  Google Scholar 

  32. J.A. Lozano and G.V. Voort, The Al-Si Phase Diagram, Solutions for Materials Preparation, Testing and Analysis, Vol 5, 2009

  33. M. Zamani, “Al-Si Cast Alloys—Microstructure and Mechanical Properties at Ambient and Elevated Temperature,” Licentiate Thesis, Department of Materials and Manufacturing, School of Engineering, Jönköping University, 2015

  34. M.J. Peel, A. Steuwer, P.J. Withers, T. Dickerson, Q. Shi, and H. Shercliff, Dissimilar Friction Stir Welds in AA5083-AA6082. Part I: Process Parameter Effects on Thermal History and Weld Properties, Metall. Mater. Trans. A, 2006, 37, p 2183–2193

    Article  Google Scholar 

  35. A. Steuwer, M.J. Peel, and P.J. Withers, Dissimilar Friction Stir Welds in AA5083–AA6082: The Effect of Process Parameters on Residual Stress, Mater. Sci. Eng. A, 2006, 441(1-2), p 187–196

    Article  Google Scholar 

Download references

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pallavi Senapati.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senapati, N.P., Bhoi, R.K. Improving the Strength of Friction-Stir-Welded Joints of AA1100 Alloy. J. of Materi Eng and Perform 30, 510–521 (2021). https://doi.org/10.1007/s11665-020-05331-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05331-6

Keywords

Navigation