Skip to main content
Log in

Lamellar and Supramolecular Feature of New Tutton’s Salts Incorporating 2-Amino-4-Methylpyrimidine: Thermal Stability, Optic Study, Antioxidant and Antimicrobial Activities

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The slow evaporation reaction of 2-amino-4-methylpyrimidine and transition metal cation (MII = Fe and Ni) in the presence of sulfuric acid H2SO4 affords two novel double sulfate salts with similar general formula (C5H8N3)2[MII(H2O)6](SO4)2·2H2O (MII = Fe and Ni) abbreviated FePRM and NiPRM, respectively. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by Infra-Red (IR) spectra, thermogravimetric analysis—differential scanning calorimetry (TG-DSC) and variable temperature powder X-ray diffraction (VT-PXRD) measurements. Structural characterization shows that the interplay of N–H···O, O–H···O and π···π interactions between lattice and coordinated water and ligands significantly contribute to the crystal packing leading to the formation and strengthening of three dimensional supramolecular assembly. Then, the structure exhibits lamellar topology where the interlayer distances are 13.065(4) and 13.138 (5) Å for FePRM and NiPRM, respectively. Hirshfeld surface analysis employing 3D molecular surface contours and 2D fingerprint plots have been used to analyze the intermolecular interactions present in the crystals. The optical properties were characterized by UV–visible spectroscopy and the calculated band gap was estimated to be 3.91 and 4.08 eV for FePRM and NiPRM, respectively. In addition, the biological activities of the complexes were investigated through the scavenging effect on DPPH radicals, reducing and phosphonolybdonum assay as antioxidant activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Saïd, H. Naïli, T. Bataille, R.P. Herrera, CrystEngComm 18(28), 5365–5374 (2016)

    Google Scholar 

  2. O. Kammoun, W. Rekik, T. Bataille, K.T. Mahmudov, M.N. Kopylovich, H. Naïli, J. Organomet. Chem. 741, 136–140 (2013)

    Google Scholar 

  3. N. Hfidhi, I. Bkhairia, D. Atoui, J. Boonmak, M. Nasri, R. Ben Salem and H. Naïli, Appl. Organomet. Chem. 33(4), e4793 (2019)

  4. R. Jlassi, A. Khalladi, H. Naïli, T. Rüffer, H. Lang, W. Rekik, Polyhedron 158, 71–75 (2019)

    CAS  Google Scholar 

  5. R. Sibille, A. Mesbah, T. Mazet, B. Malaman, S. Capelli, M. François, J. Solid State Chem. 186, 134–141 (2012)

    CAS  Google Scholar 

  6. A.M.B. Salah, H. Naïli, M. Arczyński, M. Fitta, J. Organomet. Chem. 805, 42–48 (2016)

    CAS  Google Scholar 

  7. N. Hfidhi, O. Kammoun, R. Pelka, M. Fitta, H. Naïli, Inorg. Chim. Acta 469, 431–439 (2018)

    CAS  Google Scholar 

  8. S. Walha, H. Naïli, S. Yahyaoui, B.F. Ali, M.M. Turnbull, T. Mhiri, S.W. Ng, J. Supercond. Nov. Magn. 26(2), 437–442 (2013)

    CAS  Google Scholar 

  9. N.L. Nkhili, W. Rekik, H. Naili, Monatsh. Chem. 145(6), 931–936 (2014)

    CAS  Google Scholar 

  10. S. I. Stupp, J. F. Stoddart, A. K. Shveyd, A. S. Tayi, A. C. Sue and A. Narayanan, U.S. Patent No. 9,449,731. Washington, DC: U.S. Patent and Trademark Office (2016).

  11. N. Leblanc, N. Mercier, L. Zorina, S.P. Simonov, J. Am. Chem. Soc. 133(38), 14924–14927 (2011)

    CAS  PubMed  Google Scholar 

  12. W. Ltaief, A. Mbarek, M. El-Ghozzi, H. Naïli, D. Zambon, J. Alloys Compd. 735, 29–42 (2018)

    CAS  Google Scholar 

  13. N. Kawano, M. Koshimizu, Y. Sun, N. Yahaba, Y. Fujimoto, T. Yanagida, K. Asai, J. Phy. Chem. C 118(17), 9101–9106 (2014)

    CAS  Google Scholar 

  14. O. Kammoun, W. Rekik, H. Naïli, T. Bataille, New J. Chem. 39(4), 2682–2689 (2015)

    CAS  Google Scholar 

  15. L. Nicole, C. Laberty-Robert, L. Rozes, C. Sanchez, Nanoscale 6(12), 6267–6292 (2014)

    CAS  PubMed  Google Scholar 

  16. C. Tagusagawa, A. Takagaki, S, Hayashi and K. Domen, J. Am. Chem. Soc., 2008, 130, 7230 (2008),

  17. S. Radha, W. Milius, J. Breu, P.V. Kamath, J. Solid State Chem. 204, 362–366 (2013)

    CAS  Google Scholar 

  18. O. Kammoun, T. Bataille, A. Lucas, V. Dorcet, I. Marlart, W. Rekik, T. Mhiri, Inorg. Chem. 53(5), 2619–2627 (2014)

    CAS  PubMed  Google Scholar 

  19. W. Rekik, H. Naïli, T. Mhiri, T. Bataille, Solid State Sci. 14(10), 1503–1511 (2012)

    CAS  Google Scholar 

  20. M. Jain, R.V Singh, Bioinorg Chem Appl 2006:10. doi: https://doi.org/10.1155/BCA/2006/13743

  21. T. Takeuchi, A. Böttcher, C.M. Quezada, T.J. Meade, H.B. Gray, Bioorg Med Chem 5, 815–819 (1999)

    Google Scholar 

  22. N. Sarı, P. Gürkan, S. Arslan, Trans. Met. Chem. 28, 468–474 (2003)

    Google Scholar 

  23. J.D. Modi, S.S. Sabnis, C.V. Deliwala, J. Med. Chem. 13(5), 935–941 (1970)

    CAS  PubMed  Google Scholar 

  24. S. Saïd, R.B.A. Kolsi, H. Naïli, J. Organomet. Chem. 809, 45–56 (2016)

    Google Scholar 

  25. G. M. Sheldrick, Program for Crystal Structure Refinement; Universität Göttingen, Göttingen, Germany, 1997; G. M. Sheldrick, Acta Crystallogr. 2008, A24, 112−122.

  26. K. Brandenburg, Diamond. Version 3.2i, Crystal Impact GbR, Bonn, Germany, 2012.

  27. P. Bersuder, M. Hole, G. Smith, J. Am. Oil Chem. Soc. 75(2), 181–187 (1998)

    CAS  Google Scholar 

  28. Z. Xie, J. Huang, X. Xu, Z. Jin, Food chem. 111(2), 370–376 (2008)

    CAS  PubMed  Google Scholar 

  29. P. Prieto, M. Pineda, M. Aguilar, Biochem. 269(2), 337–341 (1999)

    CAS  Google Scholar 

  30. D. A. Vanden Berghe, Methods plant Biochem. 47–69 (1991).

  31. M.R.S. Melo, J.P.A. Feitosa, A.L.P. Freitas, R.C.M. De Paula, Carbohydr. Polym. 49(4), 491–498 (2002)

    CAS  Google Scholar 

  32. S.A. Komaei, G.A. van Albada, J.G. Haasnoot, H. Kooijman, A.L. Spek, J. Reedijk, Inorg. Chim. acta 286(1), 24–29 (1999)

    Google Scholar 

  33. T.S. Thakur, G.R. Desiraju, Cryst. Growth Des. 8(11), 4031–4044 (2008)

    CAS  Google Scholar 

  34. S. Yahyaoui, W. Rekik, H. Naïli, T. Mhiri, T. Bataille, J. Solid State Chem. 180(12), 3560–3570 (2007)

    CAS  Google Scholar 

  35. H. Naïli, F. Hajlaoui, T. Mhiri, T. C. Mac Leod, M. N. Kopylovich, K. T. Mahmudov and A. J. Pombeiro, Dalton Trans., 42(2), 399–406 (2013).

  36. O. Kammoun, H. Naïli, W. Rekik, T. Bataille, Inorg. Chim. Acta 434, 209–214 (2015)

    CAS  Google Scholar 

  37. V. Laget, C. Hornick, P. Rabu, M. Drillon, J. Mater. Chem. 9(1), 169–174 (1999)

    CAS  Google Scholar 

  38. S. K.Wolff, D.J. Grimwood, J.J. McKinnon, D. Jayatilaka, M.A. Spackman, 2001.CrystalExplorer 3.0, University of Western Australia, Perth, Australia.

  39. M. Spackman, J.J. McKinnon, CrystEngComm 4(66), 378–392 (2002)

    CAS  Google Scholar 

  40. F. Hajlaoui, S. Yahyaoui, H. Naïli, T. Mhiri, T. Bataille, Polyhedron 28(11), 2113–2118 (2009)

    CAS  Google Scholar 

  41. H.E. Ahmed, S. Kamoun, Spectrochim. Acta Part A 184, 38–46 (2017)

    CAS  Google Scholar 

  42. P. Guha, S.N. Kundu, S. Chaudhuri, A.K. Pal, Mater. Chem. Phys. 74(2), 192–200 (2002)

    CAS  Google Scholar 

  43. N. Hfidhi, M. Korb, M. Fitta, E. Čižmár, H. Lang, H. Naili, Inorg. Chim. Acta 484, 206–213 (2019)

    CAS  Google Scholar 

  44. C. Aydın, M.A. El-Sadek, K. Zheng, I.S. Yahia, F. Yakuphanoglu, Opt. Laser Technol. 48, 447–452 (2013)

    Google Scholar 

  45. O.B. Moussa, H. Chebbi, Y. Arfaoui, L.R. Falvello, M. Tomas, M.F. Zid, J. Mol. Struct. 1195, 344–354 (2019)

    CAS  Google Scholar 

  46. S.G. Khaskheli, W. Zheng, S.A. Sheikh, A.A. Khaskheli, Y. Liu, A.H. Soomro, W. Huang, Int. J. Bio. Macromol. 81, 387–395 (2015)

    CAS  Google Scholar 

  47. G. Chen, S. Zhang, C. Ran, L. Wang, J. Kan, Int. J. Bio. Macromol. 91, 431–442 (2016)

    CAS  Google Scholar 

  48. I. Lassoued, L. Mora, R. Nasri, M. Aydi, F. Toldrá, M.C. Aristoy, M. Nasri, J. Proteomics 128, 458–468 (2015)

    CAS  PubMed  Google Scholar 

  49. R. Morales-Medina, F. Tamm, A.M. Guadix, E.M. Guadix, S. Drusch, Food chem. 194, 1208–1216 (2016)

    CAS  PubMed  Google Scholar 

  50. N. Kharrat, I. Aissa, M. Sghaier, M. Bouaziz, M. Sellami, D. Laouini, Y. Gargouri, J. Agric. Food Chem. 62, 9118–9127 (2014)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houcine Naïli.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hfidhi, N., Krayem, N., Erwann, J. et al. Lamellar and Supramolecular Feature of New Tutton’s Salts Incorporating 2-Amino-4-Methylpyrimidine: Thermal Stability, Optic Study, Antioxidant and Antimicrobial Activities. J Inorg Organomet Polym 31, 1549–1564 (2021). https://doi.org/10.1007/s10904-020-01817-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01817-x

Keywords

Navigation