Skip to main content
Log in

Effect of gibberellin, methyl jasmonate and myoinositol on biomass and eicosapentaenoic acid productivities in the eustigmatophyte Monodopsis subterranea CCALA 830

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Omega-3 fatty acids sourced from microalgae are in demand due to their therapeutic potential and sustainability of the source. The present study was focused towards enhancing eicosapentaenoic acid (EPA) productivity in the marine Chrysophyte Monodopsis subterranea through media supplementation using the plant growth regulators gibberellic acid, methyl jasmonate and myoinositol. The effect of three concentrations (1 μM, 10 μM and 100 μM) of supplements on biomass yield, fatty acid composition, total fatty acid (TFA) and EPA productivity were analyzed at three phases of microalgal growth. Supplementation with 100 μM GA increased biomass yield and TFA productivity by 3.3-fold and 3.9-fold respectively at the mid-exponential phase and EPA productivity increased up to 3.2-fold at the late-exponential phase. The addition of 1 μM MeJA stimulated biomass accumulation to 2.7-fold at the late-stationary phase, but this effect was reduced to 1.1–1.4-fold at higher concentrations. The addition of 10 μM MI also showed a positive effect on TFA productivity and thus increased EPA productivity by 1.8-fold at the late-stationary phase. Supplementation with 100 μM GA, 100 μM MeJA and 10 μM MI at the late-stationary phase increased all fatty acids except 18:0 and 18:2. EPA was negatively correlated with 18:2 at all three growth phases. Principal components analysis indicated a strong relationship between key fatty acids and EPA at all three growth stages and associated with 100 μM GA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Jawadi A, Rasha F, Ramalingam L, Alhaj S, Moussa H, Gollahon L, Moustaid-Moussa N (2020) Protective effects of eicosapentaenoic acid in adipocyte-breast cancer cell cross talk. J Nutr Biochem 75:108244

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Mishra G (2019) Biochemical modulation of Monodopsis subterranea (Eustigmatophyceae) by auxin and cytokinin enhances eicosapentaenoic acid productivity. J Appl Phycol 31:3441–3452

    Article  CAS  Google Scholar 

  • Bie N, Han L, Meng M, Zhang Y, Guo M, Wang C (2020) Anti-tumor mechanism of eicosapentaenoic acid (EPA) on ovarian tumor model by improving the immunomodulatory activity in F344 rats. J Funct Foods 65:103739

    Article  CAS  Google Scholar 

  • Bischoff HW, Bold HC (1963) Some soil algae from enchanted rocks and related species. University of Texas Publications No. 6318. Phycol Stud 4:1–95

    Google Scholar 

  • Carvalho AP, Malcata FX (2005) Optimization of ω-3 fatty acid production by microalgae: crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Mar Biotechnol (NY) 7:381–388

    Article  CAS  Google Scholar 

  • Chalima A, Hatzidaki A, Karnaouri A, Topakas E (2019) Integration of a dark fermentation effluent in a microalgal-based biorefinery for the production of high-added value omega-3 fatty acids. Appl Energy 241:130–138

    Article  CAS  Google Scholar 

  • Chen CY, Chen YC, Huang HC, Ho SH, Chang JS (2015) Enhancing the production of eicosapentaenoic acid (EPA) from Nannochloropsis oceanica CY2 using innovative photobioreactors with optimal light source arrangements. Bioresour Technol 191:407–413

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Wan C, Mehmood MA, Chang JS, Bai F, Zhao X (2017) Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–a review. Bioresour Technol 244:1198–1206

    Article  CAS  PubMed  Google Scholar 

  • Cho K, Kim KN, Lim NL, Kim MS, Ha JC, Shin HH, Kim MK, Roh SW, Kim D, Oda T (2015) Enhanced biomass and lipid production by supplement of myo-inositol with oceanic microalga Dunaliella salina. Biomass Bioenergy 72:1–7

    Article  CAS  Google Scholar 

  • Christov C, Pouneva I, Bozhkova M, Toncheva T, Fournadzieva S, Zafirova T (2001) Influence of temperature and methyl jasmonate on Scenedesmus incrassulatus. Biol Plant 44:367–371

    Article  CAS  Google Scholar 

  • Chu J, Li Y, Cui Y, Qin S (2019) The influences of phytohormones on triacylglycerol accumulation in an oleaginous marine diatom Phaeodactylum tricornutum. J Appl Phycol 31:1009–1019

    Article  CAS  Google Scholar 

  • Cohen Z (1994) Production potential of eicosapentaenoic acid by Monodus subterraneus. J Am Oil Chem Soc 71:941–945

    Article  CAS  Google Scholar 

  • Conrad H, Saltman P, Eppley R (1959) Effects of auxin and gibberellic acid on growth of Ulothrix. Nature 184:556–557

    Article  CAS  PubMed  Google Scholar 

  • Czerpak R, Bajguz A (1997) Stimulatory effect of auxins and cytokinins on carotenes, with differential effects on xanthophylls in the green alga Chlorella pyrenoidosa Chick. Acta Soc Bot Pol Pol Tow Bot 66:41–46

    Article  CAS  Google Scholar 

  • Czerpak R, Piotrowsk A, Szulecka K (2006) Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris. Acta Physiol Plant 28:195–203

    Article  CAS  Google Scholar 

  • Dao GH, Wu GX, Wang XX, Zhuang LL, Zhang TY, Hu HY (2018) Enhanced growth and fatty acid accumulation of microalgae Scenedesmus sp. LX1 by two types of auxin. Bioresour Technol 247:561–567

    Article  CAS  PubMed  Google Scholar 

  • Do TCV, Tran DT, Le TG, Nguyen QT (2020) Characterization of endogenous auxins and gibberellins produced by Chlorella sorokiniana TH01 under phototrophic and mixtrophic cultivation modes toward applications in microalgal biorefinery and crop research. J Chemother 2020:4910621

    Google Scholar 

  • Du K, Tao H, Wen X, Geng Y, Li Y (2015) Enhanced growth and lipid production of Chlorella pyrenoidosa by plant growth regulator GA3. Fresenius Environ Bull 24:3414–3419

    CAS  Google Scholar 

  • Erbil GÇ, Durmaz Y, Tamtürk F, Konar N (2018) Effect of Myo-inositol concentration on the growth of marine Porphyridium cruentum. J Adv Ag Technol 5:289–292

    Google Scholar 

  • Gil A (2002) Polyunsaturated fatty acids and inflammatory diseases. Biomed Pharmacother 56:388–396

    Article  CAS  PubMed  Google Scholar 

  • González-Garcinuño Á, Sánchez-Álvarez JM, Galán MA, Martin del Valle EM (2016) Understanding and optimizing the addition of phytohormones in the culture of microalgae for lipid production. Biotechnol Prog 32:1203–1211

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JA, Bell SJ, Van Ausdal W (2008) Omega-3 fatty acid supplementation during pregnancy. Rev Obstet Gynecol 1:162–169

    PubMed  PubMed Central  Google Scholar 

  • Grima EM, Pérez JS, Camacho FG, Fernández FA, Sevilla JF, Sanz FV (1994) Effect of dilution rate on eicosapentaenoic acid productivity of Phaeodactylum tricornutum UTEX 640 in outdoor chemostat culture. Biotechnol Lett 16:1035–1040

    Article  CAS  Google Scholar 

  • Grima EM, Pérez JS, Camacho FG, Medina AR, Giménez AG, Alonso DL (1995) The production of polyunsaturated fatty acids by microalgae: from strain selection to product purification. Process Biochem 30:711–719

    Article  Google Scholar 

  • Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci U S A 89:2389–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris WS, Baack ML (2015) Beyond building better brains: bridging the docosahexaenoic acid (DHA) gap of prematurity. J Perinatol 35:1–7

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Gao K (2004) Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 40:651–654

    Article  CAS  Google Scholar 

  • Jusoh M, Loh SH, Chuah TS, Aziz A, Cha TS (2015) Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Res 9:14–20

    Article  Google Scholar 

  • Kokkiligadda S, Pandey B, Ronda SR (2017) Effect of plant growth regulators on production of alpha-linolenic acid from microalgae Chlorella pyrenoidosa. Sādhanā 42:1821–1824

    Article  CAS  Google Scholar 

  • Kumari P, Reddy CRK, Jha B (2015) Methyl jasmonate-induced lipidomic and biochemical alterations in the intertidal macroalga Gracilaria dura (Gracilariaceae, Rhodophyta). Plant Cell Physiol 56:1877–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Küpper FC, Gaquerel E, Cosse A, Adas F, Peters AF, Müller DG, Kloareg B, Salaün JP, Potin P (2009) Free fatty acids and methyl jasmonate trigger defense reactions in Laminaria digitata. Plant Cell Physiol 50:789–800

    Article  PubMed  CAS  Google Scholar 

  • Kurita A, Takashima H, Ando H, Kumagai S, Waseda K, Gosho M, Amano T (2015) Effects of eicosapentaenoic acid on peri-procedural (type IVa) myocardial infarction following elective coronary stenting. J Cardiol 66:114–119

    Article  PubMed  Google Scholar 

  • Larqué E, Krauss-Etschmann S, Campoy C, Hartl D, Linde J, Klingler M, Demmelmair H, Caño A, Gil A, Bondy B, Koletzko B (2006) Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins. Am J Clin Nutr 84:853–861

    Article  PubMed  Google Scholar 

  • Lin B, Ahmed F, Du H, Li Z, Yan Y, Huang Y, Cui M, Yin Y, Li B, Wang M, Meng C (2018) Plant growth regulators promote lipid and carotenoid accumulation in Chlorella vulgaris. J Appl Phycol 30:1549–1561

    Article  CAS  Google Scholar 

  • Liu CP, Lin LP (2005) Morphology and eicosapentaenoic acid production by Monodus subterraneus UTEX 151. Micron 36:545–550

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Fernández FA, Guerrero EC, Hall DO, Grima EM (2002) Overall assessment of Monodus subterraneus cultivation and EPA production in outdoor helical and bubble column reactors. J Appl Phycol 14:331–342

    Article  CAS  Google Scholar 

  • Lu Y, Jiang P, Liu S, Gan Q, Cui H, Qin S (2010) Methyl jasmonate-or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. Bioresour Technol 101:6468–6474

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Yang G, Zhu B, Pan K (2017) A comparative study on three quantitating methods of microalgal biomass. Indian J Mar Sci 46(11):2265–2272

  • Martins JG (2009) EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr 28:525–542

    Article  CAS  PubMed  Google Scholar 

  • Mekhalfi M, Amara S, Robert S, Carrière F, Gontero B (2014) Effect of environmental conditions on various enzyme activities and triacylglycerol content in cultures of the freshwater diatom, Asterionella formosa (Bacillariophyceae). Biochimie 101:21–30

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto K, Oka M, Ueda J (1997) Update on the possible mode of action of the jasmonates: focus on the metabolism of cell wall polysaccharides in relation to growth and development. Physiol Plant 100:631–638

    Article  CAS  Google Scholar 

  • Molina E, Martinez ME, Sánchez S, García F, Contreras A (1991) Growth and biochemical composition with emphasis on the fatty acids of Tetraselmis sp. Appl Microbiol Biotechnol 36:21–25

    Article  CAS  Google Scholar 

  • Mori TA, Woodman RJ (2006) The independent effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors in humans. Curr Opin Clin Nutr Metab Care 9:95–104

    Article  CAS  PubMed  Google Scholar 

  • Mozaffari-Khosravi H, Yassini-Ardakani M, Karamati M, Shariati-Bafghi SE (2013) Eicosapentaenoic acid versus docosahexaenoic acid in mild-to-moderate depression: a randomized, double-blind, placebo-controlled trial. Eur Neuropsychopharmacol 23:636–644

    Article  CAS  PubMed  Google Scholar 

  • Nichols BW, Appleby RS (1969) The distribution and biosynthesis of arachidonic acid in algae. Phytochemistry 8:1907–1915

    Article  CAS  Google Scholar 

  • Olsen SF, Sørensen JD, Secher NJ, Hedegaard M, Henriksen TB, Hansen HS, Grant A (1992) Randomised controlled trial of effect of fish-oil supplementation on pregnancy duration. Lancet 339:1003–1007

    Article  CAS  PubMed  Google Scholar 

  • Paliwal C, Mitra M, Bhayani K, Bharadwaj SV, Ghosh T, Dubey S, Mishra S (2017) Abiotic stresses as tools for metabolites in microalgae. Bioresour Technol 244:1216–1226

    Article  CAS  PubMed  Google Scholar 

  • Parsaeimehr A, Mancera-Andrade EI, Robledo-Padilla F, Iqbal HM, Parra-Saldivar R (2017) A chemical approach to manipulate the algal growth, lipid content and high-value alpha-linolenic acid for biodiesel production. Algal Res 26:312–322

    Article  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A (2014) The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul 73:57–66

    Article  CAS  Google Scholar 

  • Qiang HU, Zheungu H, Cohen Z, Richond A (1997) Enhancement of eicosapentaenoic acid (EPA) and γ-linolenic acid (GLA) production by manipulating algal density of outdoor cultures of Monodus subterraneus (Eustigmatophyta) and Spirulina platensis (Cyanobacteria). Eur J Phycol 32:81–86

    Article  Google Scholar 

  • Renuka N, Guldhe A, Singh P, Bux F (2018) Combined effect of exogenous phytohormones on biomass and lipid production in Acutodesmus obliquus under nitrogen limitation. Energy Convers Manag 168:522–528

    Article  CAS  Google Scholar 

  • Salas JJ, Ohlrogge JB (2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 403:25–34

    Article  CAS  PubMed  Google Scholar 

  • Saono S (1964) Effect of gibberellic acid on the growth and multiplication of some soil microorganisms and unicellular green algae. Nature 204:1328–1329

    Article  CAS  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    Article  CAS  Google Scholar 

  • Song C, Shieh CH, Wu YS, Kalueff A, Gaikwad S, Su KP (2016) The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer’s disease: acting separately or synergistically? Prog Lipid Res 62:41–54

    Article  CAS  PubMed  Google Scholar 

  • Świątek A, Lenjou M, Van Bockstaele D, Inzé D, Van Onckelen H (2002) Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiol 128:201–211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Talebi AF, Tohidfar M, Derazmahalleh M, Mahsa S, Sulaiman A, Baharuddin AS, Tabatabaei M (2015) Biochemical modulation of lipid pathway in microalgae Dunaliella sp. for biodiesel production. Biomed Res Int 2015:597198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physiol 54:163–170

    Article  CAS  Google Scholar 

  • Tate JJ, Gutierrez-Wing MT, Rusch KA, Benton MG (2013) The effects of plant growth substances and mixed cultures on growth and metabolite production of green algae Chlorella sp.: a review. J Plant Growth Regul 32:417–428

    Article  CAS  Google Scholar 

  • Udayan A, Sabapathy H, Arumugam M (2020) Stress hormones mediated lipid accumulation and modulation of specific fatty acids in Nannochloropsis oceanica CASA CC201. Bioresour Technol 310:123437

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Tanaka K, Asada K, Kasai Z (1971) The growth promoting effect of phytic acid on callus tissues of rice seed. Plant Cell Physiol 12:161–164

    Article  CAS  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhong H, He R, Wang X, Cheng J, Yao G, Jin F (2019) Synergetic conversion of microalgae and CO2 into value-added chemicals under hydrothermal conditions. Green Chem 21:1247–1252

    Article  CAS  Google Scholar 

  • Yin HC (1937) Effect of auxin on Chlorella vulgaris. Proc Natl Acad Sci U S A 23:174–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu XJ, Sun J, Sun YQ, Zheng JY, Wang Z (2016) Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochem Eng J 112:258–268

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.A. is thankful for SRF by Council of Scientific & Industrial Research, Human Resource Development Group (09/045(1562)/2018-EMR-1).

Funding

The authors acknowledge the financial support from the Department of Biotechnology, Ministry of Science and Technology (BT/PR6027/AGII/106/859/2012).

Author information

Authors and Affiliations

Authors

Contributions

Both S.A. and G.M. carried out the conceptual design of the study and approved the final version of the submitted manuscript. Data acquisition, analyses and manuscript writing were completed by S.A. along with G.M. G.M. contributed to data interpretation and editing the manuscript critically.

Corresponding author

Correspondence to Girish Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, S., Mishra, G. Effect of gibberellin, methyl jasmonate and myoinositol on biomass and eicosapentaenoic acid productivities in the eustigmatophyte Monodopsis subterranea CCALA 830. J Appl Phycol 33, 287–299 (2021). https://doi.org/10.1007/s10811-020-02317-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02317-8

Keywords

Navigation