Skip to main content
Log in

Nanocracks upon Fracture of Quartz

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The spectrum is obtained and the time dependences of fractoluminescence signals upon fracture of the surface of quartz are studied. The analysis of the obtained data has shown that at fracture, clusters of four cracks having a size of a few nm appear. Crack formation is associated with the destruction of barriers precluding the motion of dislocations along the sliding planes. The distribution of cracks by sizes (surface areas of crack walls) obeys the Gutenberg–Richter law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Amitrano, D., Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value, J. Geophys. Res.: Solid Earth, 2003, vol. 108, no. B1, Paper ID 2444. https://doi.org/10.1029/2001JB000680

  2. Betekhtin, V.I. and Kadomtsev, A.G., Evolution of microscopic cracks and pores in solids under loading, Phys. Solid State, 2005, vol. 47, no. 5, pp. 825–831.

    Article  Google Scholar 

  3. Cheremskoi, P.G., Slezov, V.V., and Betekhtin, V.I., Pory v tverdom tele (Pores in a Solid), Moscow: Energoatomizdat, 1990.

  4. Chibisov, A.N. and Chibisova, M.A., Simulation of the atomic and electronic structures of mesoporous SiO2 containing Ti4+ and Zr4+ ions, Tech. Phys., 2011, vol. 56, no. 4, pp. 567–569.

    Article  Google Scholar 

  5. Cottrell, A.H., Theory of Crystal Dislocations, New York: Gordon and Breach, 1964.

    Google Scholar 

  6. El’yashevich, M.A., Atomnaya i molekulyarnaya spektroskopiya (Atomic and Molecular Spectroscopy), 2nd ed., Moscow: Editorial URSS, 2001.

  7. Etchepare, J., Merian, M., and Smetankine, L., Vibrational normal modes of SiO2: α and β quartz, J. Chem. Phys., 1974, vol. 60, pp. 1873–1876.

    Article  Google Scholar 

  8. Gottstein, G., Physical Foundations of Materials Science, Berlin: Springer, 2004.

    Book  Google Scholar 

  9. Götze, J., Application of cathodoluminescence, microscopy and spectroscopy in geosciences, Microsc. Microanal, 2012, vol. 18, no. 6, pp. 1270–1284.

    Article  Google Scholar 

  10. Gutenberg, B. and Richter, C., Seismicity of the Earth and Associated Phenomena, 2nd ed., Princeton: Princeton Univ., 1954.

    Google Scholar 

  11. Kawaguchi, Y., Fractoluminescence spectra of crystalline quartz, Jpn. J. Appl. Phys., 1998, vol. 37, pp. 1892–1896.

    Article  Google Scholar 

  12. Lei, X.-L., Kusunose, K., Rao, M.V.M.S., Nishizawa, O., and Satoh, T., Quasi-static fault growth and cracking in homogenous brittle rock under triaxial compression using acoustic emission monitoring, J. Geophys. Res., 2000, vol. 105, no. B3, pp. 6127–6139.

    Article  Google Scholar 

  13. Lockner, D.A., Byerlee, J.D., Kuksenko, V., Ponomarev, V., and Sidorin, A., Observations of quasi-static fault growth from acoustic emissions, in Fault Mechanics and Transport Properties of Rocks, Evans, B. and Wong, T.F., Eds., London: Academic Press, 1992, pp. 3–31.

    Google Scholar 

  14. Petrov, V.A., Bashkarev, A.Ya., and Vettegren’, V.I., Fizicheskie osnovy prognozirovaniya dolgovechnosti konstruktsionnykh materialov (Physical Basis for Predicting the Durability of Structural Materials), St. Petersburg: Politekhnika, 1993.

  15. Richter, H., Wang, Z.P., and Ley, L., The one phonon Raman spectrum of microcrystalline silicon, Solid State Commun., 1981, vol. 39, no. 5, pp. 625–629.

    Article  Google Scholar 

  16. Scholz, C.H., The Mechanics of Earthquakes and Faulting, 3rd ed., Cambridge: Cambridge Univ., 2019.

    Book  Google Scholar 

  17. Shuldiner, A.V. and Zakrevskii, V.A., On the mechanism of deformation induced destruction of color centers, Radiat. Prot. Dosim., 1996, vol. 65, nos. 1–4, pp. 113–131.

    Article  Google Scholar 

  18. Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Physics of Earthquakes and Precursors), Moscow: Nauka, 2003.

  19. Sobolev, G.A., Vettegren, V.I., Kireenkova, S.M., Kulik, V.B., Mamalimov, R.I., Morozov, Yu.A., Smul’skaya, A.I., and Shcherbakov, I.P., Nanokristally v gornykh porodakh (Nanocrystals in Rocks), Moscow: GEOS, 2016.

  20. Stevens Karlceff, M.A. and Phillips, M.R., Cathodoluminescence microcharacterization of the defect structure of quartz, Phys. Rev. B: Condens. Matter, 1995, vol. 52, no. 5, pp. 3122–3133.

    Article  Google Scholar 

  21. Thompson, B.D., Young, R.P., and Lockner, D.A., Fracture in Westerly granite under AE feedback and constant strain rate loading: nucleation, quasi-static propagation, and the transition to unstable fracture propagation, Pure Appl. Geophys., 2006, vol. 163, no. 5, pp. 995–1019.

    Article  Google Scholar 

  22. Turro, N.J., Ramamurthy, V., and Scaiano, J.C., Modern Molecular Photochemistry of Organic Molecules, Sausalito, California: Univ. Sci. Books, 2010.

    Google Scholar 

  23. Vettegren, V.I., Ponomarev A.V., Shcherbakov I.P., and Mamalimov R.I., The influence of the structure of a nanocrystalline solid (sandstone) on the dynamics of microcrack accumulation on friction, Phys. Solid State, 2017a, vol. 59, no. 8, pp. 1580–1583.

    Article  Google Scholar 

  24. Vettegren, V.I., Sobolev, G.A., Ponomarev, A.V., Shcherbakov, I.P., and Mamalimov, R.I., Nanosecond dynamics of destruction of the surface layer of a heterogeneous nanocrystalline solid (sandstone) under the friction, Phys. Solid State, 2017b, vol. 59, no. 5, pp. 955–959.

    Article  Google Scholar 

  25. Vettegren, V.I., Ponomarev, A.V., Arora, K., Raza, H., Mamalimov, R.I., Shcherbakov, I.P., and Fokin, I.V., Nanosecond dynamics of the destruction of heterogeneous natural bodies by friction, Phys. Solid State, 2018, vol. 60, no. 11, pp. 2300–2304.

    Article  Google Scholar 

  26. Vettegren, V.I., Ponomarev, A.V., Mamalimov, R.I., and Shcherbakov, I.P., Formation of microcracks in a heterogeneous solid (sandstone) under the influence of friction, Phys. Solid State, 2019a, vol. 61, no. 7, pp. 1259–1262.

    Article  Google Scholar 

  27. Vettegren, V.I., Ponomarev, A.V., Mamalimov, R.I., Shcherbakov, I.P., Arora, K., Srinagesh, D., and Chadha, R.K., Microcracks in basalt and tonalite at friction, Izv. Phys. Solid Earth, 2019b, vol. 55, no. 6, pp. 879–885.

    Article  Google Scholar 

  28. Vladimirov, V.I., Fizicheskaya priroda razrusheniya metallov (Physics of Fracture in Metals), Moscow: Metallurgiya, 1984.

  29. Wiemer, S. and Wyss, M., Mapping spatial variability of the frequency-magnitude distribution of earthquakes, Adv. Geophys., 2002, vol. 45, pp. 259–302.

    Article  Google Scholar 

  30. Zhurkov, S.N., Kuksenko, V.S., and Petrov, V.A., Physical basis for predicting mechanical failure, Dokl. Akad. Nauk SSSR, 1981, vol. 259, no. 6, pp. 1350–1353.

    Google Scholar 

Download references

Funding

The work was carried out in partial fulfillment of the State contract; the experimental part of the study was supported by the Russian Foundation for Basic Research (project no. 20-05-00155a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vettegren.

Additional information

Tranlslated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vettegren, V.I., Ponomarev, A.V., Mamalimov, R.I. et al. Nanocracks upon Fracture of Quartz. Izv., Phys. Solid Earth 56, 827–832 (2020). https://doi.org/10.1134/S1069351320060129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320060129

Keywords:

Navigation