Skip to main content
Log in

Nano-indentation and Corrosion Characteristics of Ultrasonic Vibration Assisted Stir-Cast AZ31–WC–Graphite Nano-composites

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Current study investigates the effect of graphite nanoparticles on nanoindentation behavior and corrosion characteristics of Mg–WC nanocomposites. Composites are developed by ultrasonic treatment associated stir casting method. Typical characterizations of nanocomposites are conducted using optical microscopy and scanning electron microscopy. Compositions of as cast materials are examined using energy dispersive X-ray analysis. Nanoindentation tests are conducted to expose elastic modulus and nanohardness of developed hybrid nanocomposites. Addition of 1 wt% nano Gr as reinforcement in Mg–WC has enhanced both nanohardness and elastic modulus of composites, while further addition include detrimental effects. Corrosion tests are performed with the help of electrochemical impedance spectroscopy and potentiodynamic polarization tests. Corrosion study reveals that incorporation of 1 wt% Gr has improved corrosion resistance but further addition of graphite nanoparticles results in decrease in the corrosion resistance. To ascertain corrosion mechanism, corroded surfaces are characterized which discloses that surface of Mg–2WC–1Gr nanocomposite possess less number of cracks collinear with its least corrosion rate among all hybrid nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. M.K. Kulekci, Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39(9–10), 851–865 (2008). https://doi.org/10.1007/s00170-007-1279-2

    Article  Google Scholar 

  2. G.L. Makar, J. Kruger, Corrosion of magnesium. Int. Mater. Rev. 38(3), 138–153 (1993). https://doi.org/10.1179/imr.1993.38.3.138

    Article  CAS  Google Scholar 

  3. R. Casati, M. Vedani, Metal matrix composites reinforced by nano-particles—a review. Metals 4(1), 65–83 (2014). https://doi.org/10.3390/met4010065

    Article  CAS  Google Scholar 

  4. Q.B. Nguyen, Y.H.M. Sim, M. Gupta, C.Y.H. Lim, Tribology characteristics of magnesium alloy AZ31B and its composites. TribolInt 82, 464–471 (2015). https://doi.org/10.1016/j.triboint.2014.02.024

    Article  CAS  Google Scholar 

  5. A. Erman, J. Groza, X. Li, H. Choi, G. Cao, Nanoparticle effects in cast Mg-1 wt% SiC nano-composites. Mater. Sci. Eng. A 558, 39–43 (2012). https://doi.org/10.1016/j.msea.2012.07.048

    Article  CAS  Google Scholar 

  6. G.K. Meenashisundaram, M. Gupta, Low volume fraction nano-titanium particulates for improving the mechanical response of pure magnesium. J. Alloys Compd. 593, 176–183 (2014). https://doi.org/10.1016/j.jallcom.2013.12.157

    Article  CAS  Google Scholar 

  7. B. Selvam, P. Marimuthu, R. Narayanasamy, V. Anandakrishnan, K.S. Tun, M. Gupta, M. Kamaraj, Dry sliding wear behaviour of zinc oxide reinforced magnesium matrix nano-composites. Mater. Des. 58, 475–481 (2014). https://doi.org/10.1016/j.matdes.2014.02.006

    Article  CAS  Google Scholar 

  8. M. Rashad, F. Pan, H. Hu, M. Asif, S. Hussain, J. She, Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Mater. Sci. Eng., A 630, 36–44 (2015). https://doi.org/10.1016/j.msea.2015.02.002

    Article  CAS  Google Scholar 

  9. M. Hardiman, T.J. Vaughan, C.T. McCarthy, Fibrous composite matrix characterization using nanoindentation: the effect of fibre constraint and the evolution from bulk to in situ matrix properties. Compos. Part A-Appl. Sci. Manuf. 68, 296–303 (2015). https://doi.org/10.1016/j.compositesa.2014.09.022

    Article  CAS  Google Scholar 

  10. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992). https://doi.org/10.1557/JMR.1992.1564

    Article  CAS  Google Scholar 

  11. S. Banerjee, S. Poria, G. Sutradhar, P. Sahoo, Nanoindentation and Scratch Resistance Characteristics of AZ31–WC Nanocomposites. J. Mol. Eng. Mater. (2020). https://doi.org/10.1142/s2251237319500072

    Article  Google Scholar 

  12. S. Banerjee, S. Poria, G. Sutradhar, P. Sahoo, Corrosion behavior of AZ31–WC nano-composites. J. Mag. Alloy 7(4), 681–695 (2019). https://doi.org/10.1016/j.jma.2019.07.004

    Article  CAS  Google Scholar 

  13. A.E.A. Al-maamari, A.A. Iqbal, D.M. Nuruzzaman, Wear and mechanical characterization of Mg–Gr self-lubricating composite fabricated by mechanical alloying. J. Mag. Alloy 7(2), 283–290 (2019). https://doi.org/10.1016/j.jma.2019.04.002

    Article  CAS  Google Scholar 

  14. P. Narayanasamy, N. Selvakumar, Tensile, compressive and wear behaviour of self-lubricating sintered magnesium based composites. Trans. Nonferrous Met. Soc. 27(2), 312–323 (2017). https://doi.org/10.1016/S1003-6326(17)60036-0

    Article  CAS  Google Scholar 

  15. M. Endo, T. Hayashi, I. Itoh, Y.A. Kim, D. Shimamoto, H. Muramatsu, S. Koide, An anticorrosive magnesium/carbon nanotube composite. Appl. Phys. Lett. 92, 063105 (2008). https://doi.org/10.1063/1.2842411

    Article  CAS  Google Scholar 

  16. K. Funatsu, H. Fukuda, R. Takei, J. Umeda, K. Kondoh, Quantitative evaluation of initial galvanic corrosion behavior of CNTs reinforced Mg–Al alloy. Adv. Powder Technol. 24(5), 833–837 (2013). https://doi.org/10.1016/j.apt.2013.02.002

    Article  CAS  Google Scholar 

  17. M. Selvam, K. Saminathan, P. Siva, P. Saha, V. Rajendran, Corrosion behavior of Mg/graphene composite in aqueous electrolyte. Mater. Chem. Phys. 172, 129–136 (2016). https://doi.org/10.1016/j.matchemphys.2016.01.051

    Article  CAS  Google Scholar 

  18. J.S.S. Babu, K.P. Nair, G. Unnikrishnan, C.G. Kang, H.H. Kim, Fabrication and properties of magnesium (AM50)-based hybrid composites with graphite nanofiber and alumina short fiber. J. Compos. Mater. 44(8), 971–987 (2010). https://doi.org/10.1177/0021998309349548

    Article  CAS  Google Scholar 

  19. S.K. Thakur, T.S. Srivatsan, M. Gupta, Synthesis and mechanical behavior of carbon nanotube-magnesium composites hybridized with nanoparticles of alumina. Mater. SciEng A 466(1–2), 32–37 (2007). https://doi.org/10.1016/j.msea.2007.02.122

    Article  CAS  Google Scholar 

  20. A.K. Mondal, C. Blawert, S. Kumar, Corrosion behavior of creep-resistant AE42 magnesium alloy-based hybrid composites developed for powertrain applications. Mater. Corros. 66(10), 1150–1158 (2015). https://doi.org/10.1002/maco.201408071

    Article  CAS  Google Scholar 

  21. S.K. Khatkar, R. Verma, S.S. Kharb, A. Thakur, R. Sharma, Optimization and Effect of reinforcements on the sliding wear behavior of self-lubricating AZ91D–SiC–Gr hybrid composites. Silicon (2020). https://doi.org/10.1007/s12633-020-00523-0

    Article  Google Scholar 

  22. K.S. Prakash, P. Balasundar, S. Nagaraja, P.M. Gopal, V. Kavimani, Mechanical and wear behavior of Mg–SiC–Gr hybrid composites. J. Mag. Alloy 4(3), 197–206 (2016). https://doi.org/10.1016/j.jma.2016.08.001

    Article  CAS  Google Scholar 

  23. I. Aatthisugan, A.R. Rose, D.S. Jebadurai, Mechanical and wear behavior of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite. J. Mag. Alloy 5(1), 20–25 (2017). https://doi.org/10.1016/j.jma.2016.12.004

    Article  CAS  Google Scholar 

  24. B.M. Girish, B.M. Satish, S. Sarapure, Optimization of wear behavior of magnesium alloy AZ91 hybrid composites using Taguchi experimental design. Metall. Mater. Trans. A 47(6), 3193–3200 (2016). https://doi.org/10.1007/s11661-016-3447-1

    Article  CAS  Google Scholar 

  25. S.K. Katkar, N.M. Suri, S. Kant, A review on mechanical and tribological properties of graphite reinforced self-lubricating hybrid metal matrix composites. Rev. Adv. Mater. Sci. 56(1), 1–20 (2018). https://doi.org/10.1515/rams-2018-0036

    Article  Google Scholar 

  26. S. Banerjee, S. Poria, G. Sutradhar, P. Sahoo, Dry sliding tribological behavior of AZ31–WC nano-composites. J. Mag. Alloy 7(2), 315–327 (2019). https://doi.org/10.1016/j.jma.2018.11.005

    Article  CAS  Google Scholar 

  27. S. Banerjee, S. Poria, G. Sutradhar, P. Sahoo, Tribological behavior of Mg–WC nano-composites at elevated temperature. Mater. Res. Express 6(8), 0865c6 (2019). https://doi.org/10.1088/2053-1591/ab2379

    Article  CAS  Google Scholar 

  28. S. Banerjee, S. Poria, G. Sutradhar, P. Sahoo, Abrasive wear behavior of WC nanoparticle reinforced magnesium metal matrixcomposites. Surf. Topogr. Metrol. Prop. 8(2), 025001 (2020). https://doi.org/10.1088/2051-672X/ab82a1

    Article  CAS  Google Scholar 

  29. N. Cuadrado, D. Casellas Padro, L.M. Llanes Pitarch, I. Gonzalez, J. Caro. Effect of crystal anisotropy on the mechanical properties of WC embedded in WC-Co cemented carbides. in Proceedings of the Euro PM2011 Powder Metallurgy Congress & Exhibition (pp. 215–220) (2011). http://hdl.handle.net/2117/14784

  30. G. Cao, H. Choi, J. Oportus, H. Konishi, X. Li, Study on tensile properties and microstructure of cast AZ91D/Al Nanocomposites. Mater. Sci. Eng. A 494, 127–131 (2008). https://doi.org/10.1016/j.msea.2008.04.070

    Article  CAS  Google Scholar 

  31. C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Compos. Sci. Technol. 68, 1432–1439 (2008). https://doi.org/10.1016/j.compscitech.2007.10.057

    Article  CAS  Google Scholar 

  32. M. Paramsothy, S.F. Hassan, N. Srikanth, M. Gupta, Simultaneous enhancement of tensile/compressive strength and ductility of magnesium alloy AZ31 using carbon nanotubes. J. Nanosci. Nanotechnol. 10(2), 956–964 (2010). https://doi.org/10.1166/jnn.2010.1809

    Article  CAS  Google Scholar 

  33. O. Guler, Y. Say, B. Dikici, The effect of graphene nano-sheet (GNS) weight percentage on mechanical and corrosion properties of AZ61 and AZ91 based magnesium matrix composites. J. Compos. Mater. (2020). https://doi.org/10.1177/0021998320933345

    Article  Google Scholar 

  34. M. Rashad, F. Pan, A. Tang et al., Development of magnesium-graphene nanoplatelets composite. J. Compos. Mater. 49, 285–293 (2015). https://doi.org/10.1177/0021998313518360

    Article  CAS  Google Scholar 

  35. X. Du, W. Du, Z. Wang et al., Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites. Mater. SciEng A 711, 633–642 (2018). https://doi.org/10.1016/j.msea.2017.11.040

    Article  CAS  Google Scholar 

  36. L. Wu, C. Wang, D.B. Pokharel, I.I.N. Etim, L. Zhao, J. Dong, N. Chen, Effect of applied potential on the microstructure, composition and corrosion resistance evolution of fluoride conversion film on AZ31 magnesium alloy. J. Mater. Sci. Technol. 34, 2084–2090 (2018). https://doi.org/10.1016/j.jmst.2018.04.009

    Article  Google Scholar 

  37. V. Kavimani, K.S. Prakash, M.S. Starvin, B. Kalidas, V. Viswamithran, S.R. Arun, Tribo-surface characteristics and wear behaviour of SiC@ r-GO/Mg composite worn under varying control factor. Silicon 12, 1–11 (2019). https://doi.org/10.1007/s12633-019-0095-2

    Article  CAS  Google Scholar 

  38. H.R. Bakhsheshi-Rad, E. Hamzah, H.Y. Tok, M. Kasiri-Asgarani, S. Jabbarzare, M. Medraj, Microstructure, in vitro corrosion behavior and cytotoxicity of biodegradable Mg–Ca–Zn and Mg–Ca–Zn–Bi alloys. J. Mater. Eng. Perform. 26, 653–666 (2017). https://doi.org/10.1007/s11665-016-2499-0

    Article  CAS  Google Scholar 

  39. E.S.M. Sherif, A.A. Almajid, Corrosion of magnesium/manganese alloy in chloride solutions and its inhibition by 5-(3-aminophenyl)-tetrazole. Int. J. Electrochem. Sci. 6, 2131–2148 (2011)

    Google Scholar 

  40. M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 89, 92–193 (2017). https://doi.org/10.1016/j.pmatsci.2017.04.011

    Article  CAS  Google Scholar 

  41. M.A. Afifi, Corrosion behavior of zinc-graphite metal matrix composite in 1 M of HCl. ISRN Corros. 279856, 1–8 (2014). https://doi.org/10.1155/2014/279856

    Article  CAS  Google Scholar 

  42. D. Thirumalaikumarasamy, K. Shanmugam, V. Balasubramanian, Comparison of the corrosion behavior of AZ31B magnesium alloy under immersion test and potentiodynamic polarization test in NaCl solution. J. Mag. Alloy 2(1), 36–49 (2014). https://doi.org/10.1016/j.jma.2014.01.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge assistance of DST (Govt. of India) via SMART FOUNDRY 2020, Jadavpur University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Poria, S., Sutradhar, G. et al. Nano-indentation and Corrosion Characteristics of Ultrasonic Vibration Assisted Stir-Cast AZ31–WC–Graphite Nano-composites. Inter Metalcast 15, 1058–1072 (2021). https://doi.org/10.1007/s40962-020-00538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00538-8

Keywords

Navigation