Skip to main content
Log in

Development of microsatellite markers for the predatory mite Phytoseiulus macropilis and cross-amplification in three other species of phytoseiid mites

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Phytoseiid mites are efficient predators of mites and small pest insects. Understanding the dispersion and distribution pattern of phytoseiid mites is essential to promote the conservation of these natural enemies and support their use in biological control. Population genetic studies using molecular markers such as microsatellites have proved to be extremely informative to address questions about population structure and dispersion patterns of predatory mites. The objective of this work was to develop specific microsatellite markers for the predatory mite Phytoseiulus macropilis, aiming at improving field dispersion studies. For this purpose, the genomic DNA was extracted from the whole body of a pool of 260 adult females and used to build the genomic microsatellites-enriched library, using biotinylated probes (CT)8 and (GT)8. In total 26 pairs of primers were synthesized and screened across 30 adult females of P. macropilis for characterization. Seven loci were polymorphic, revealing from two to six alleles per locus. Cross amplifications were successfully obtained in the species Phytoseiulus persimilis, Amblyseius swirskii and Proprioseiopsis sp. The molecular markers obtained are the first developed for P. macropilis—they are effective for the detection and quantification of genetic variation, and show high transferability, thus can be used in genetic and molecular studies of this and other species of the same genus and also of close genera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie LG et al (2009) Permanent genetic resources added to molecular ecology resources database 1 January 2009-30. Mol Ecol Resour 9:1375–1379

    CAS  PubMed  Google Scholar 

  • Alasaad S, Oleaga A, Casais R, Rossi L, Min AM, Soriguer RC, Gortázar C (2011) Temporal stability in the genetic structure of Sarcoptes scabiei under the host-taxon law: empirical evidences from wildlife-derived Sarcoptes mite in Asturias, Spain. Pestic Vectors 4:151. https://doi.org/10.1186/1756-3305-4-151

    Article  Google Scholar 

  • Bailly X, Migeon A, Navajas M (2004) Analysis of microsatellite variation in the spider mite Tetranychus turkestani (Acari: Tetranychidae) reveals population genetic structure and raises questions about related ecological factors. Biol J Linn Soc 82:69–78

    Google Scholar 

  • Barbar Z, Tixier MS, Cheval B, Kreiter S (2006) Effects of agroforestry on Phytoseiidae mite communities (Acari: Phytoseiidae) in vineyards in the South of France. Exp Appl Acarol 40:175–188

    PubMed  Google Scholar 

  • Barratt BIP, Moran VC, Bigler F et al (2018) The status of biological control and recommendations for improving uptake for the future. Biocontrol 63:155–167

    Google Scholar 

  • Bech N, Novoa C, Allienne JF, Boissier J (2010) Transferability of microsatellite markers among economically and ecologically important galliform birds. Gen Mol Res 9(2):1121–1129

    CAS  Google Scholar 

  • Bellini MR, de Araujo RV, Silva ES, de Moraes GJ, Berti Filho E (2010) Life cycle of Proprioseiopsis cannaensis (Muma) (Acari: Phytoseiidae) on different types of food. Neotrop Entomol 39(3):360–364

    PubMed  Google Scholar 

  • Billotte N, Lagoda PJL, Risterrucci A, Baurens F (1999) Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54:277–288

    CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canales-Aguirre CB, Ferrada S, Hernández CE, Galleguillos R (2010) Usefulness of heterologous microsatellites obtained from Genypterus blacodes (Schneider 1801) in species Genypterus off the Southeast Pacific. Gayana 74(1):74–77

    Google Scholar 

  • Creste S, Neto AT, Figueira A (2001) Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Rep 19:299–306

    CAS  Google Scholar 

  • Croft BA, Blackwood JS, McMurtry JA (2004) Classifying life-style types of phytoseiid mites: diagnostic traits. Exp Appl Acarol 33:247–260

    Google Scholar 

  • Doğramaci M, Kakkar G, Kumar V (2013) Swirski mite, Amblyseius swirskii Athias-Henriot (Arachnida: Mesostigmata: Phytoseiidae). Featured creatures. University of Florida. http://entnemdept.ufl.edu/creatures/BENEFICIAL/swirksi_mite.htm

  • Emmert CHJ, Mizell RF, Andersen PC, Frank JH, Stimac JL (2008a) Effects of contrasting diets and temperatures on reproduction and prey consumption by Proprioseiopsis asetus (Acari: Phytoseiidae). Exp Appl Acarol 44(1):11–26

    PubMed  Google Scholar 

  • Emmert CHJ, Mizell RF, Andersen PC, Frank JH, Stimac JL (2008b) Diet effects on intrinsic rate of increase and rearing of Proprioseiopsis asetus (Acari: Phytoseiidae). Ann Entomol Soc Am 101(6):1033–1040

    Google Scholar 

  • Fadini MAM, Lemos WP, Venzon M, Mourão SA (2004) Herbivoria de Tetranychus urticae Koch (Acari: Tetranychidae) induz defesa direta em morangueiro? Neotrop Entomol 33(3):293–297

    Google Scholar 

  • Gerson U, Smiley RL, Ochoa T (2003) Mites (Acari) for Pest Control. Blackwell Science, Oxford

    Google Scholar 

  • Grbić M et al (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492

    PubMed  PubMed Central  Google Scholar 

  • Hinomoto N, Todokoro Y, Higaki T (2011) Population structure of the predatory mite Neoseiulus womersleyi in a tea field based on an analysis of microsatellite DNA markers. Exp Appl Acarol 53:1–15

    PubMed  Google Scholar 

  • Hoy MA (1985) Recent advances in genetics and genetic improvement of the Phytoseiidae. Ann Rev Entomol 30:345–370

    Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    PubMed  Google Scholar 

  • Kanouh M, Tixier MS, Okassa M, Kreiter S (2010) Phylogenetic and biogeographic analysis of the genus Phytoseiulus (Acari: Phytoseiidae). Zool Scr 39:450–461

    Google Scholar 

  • McMurtry JA, de Moraes GJ, Sourasso NF (2013) Revision of the life styles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320

    Google Scholar 

  • Mercado VT, Valdivia RB, Martínez PC (2011) Parámetros biológicos de Proprioseiopsis iorgius sobre Tetranychus desertorum (Acari: Phytoseiidae, Tetranychidae). Rev Colomb Entomol 37:62–66

    Google Scholar 

  • Mia MY (2005) Detection of hybridization between Chinese carp species (Hypophthalmichthys molitrix and Aristichthys nobilis) in hatchery broodstock in Bangladesh, using DNA microsatellite loci. Aquaculture 247:267–273

    CAS  Google Scholar 

  • Navajas M, Fenton B (2000) The application of molecular markers in the study of diversity in acarology: a review. Exp Appl Acarol 24:751–774

    CAS  PubMed  Google Scholar 

  • Navajas M, Perrot-Minnot MJ, Lagnel J, Migeon A, Bourse T, Cornuet JM (2002) Genetic structure of a greenhouse population of the spider mite Tetranychus urticae: spatio-temporal analysis with microsatellite markers. Insect Mol Biol 11:157–165

    CAS  PubMed  Google Scholar 

  • Nishimura S, Hinomoto N, Takafuji A (2003) Isolation, characterization, inheritance and linkage of microsatellite markers in Tetranychus kanzawai (Acari: Tetranychidae). Exp Appl Acarol 31:93–103

    CAS  PubMed  Google Scholar 

  • Nyoni BNI, Gorman K, Mzilahowa T, Williamson MS, Navajas M, Field LM, Bass C (2011) Pyrethroid resistance in the tomato red spider mite, Tetranychus evansi, is associated with mutation of the para-type sodium channel. Pest Manag Sci 67:891–897

    CAS  PubMed  Google Scholar 

  • Oldenbroek K, van der Waaij L (2015) Textbook animal breeding and genetics for BSc students. Centre for Genetic Resources and Animal Breeding and Genomics Group, Wageningen University and Research Centre, Wageningen, p 311

  • Olivatti AM, Boni TA, Silva-Júnior NJ, Resende LV, Gouveia FO, Telles MPC (2011) Heterologous amplification and characterization of microsatellite markers in the Neotropical fish Leporinus friderici. Genet Mol Res 10:1403–1408

    CAS  PubMed  Google Scholar 

  • Oliveira H, Fadini MAM, Venzon M, Rezende D, Rezende F, Palini A (2009) Evaluation of the predatory mite Phytoseiulus macropilis (Acari: Phytoseiidae) as a biological control agent of the two-spotted spider mite on strawberry plants under greenhouse conditions. Exp Appl Acarol 47:275–283

    PubMed  Google Scholar 

  • Pannebakker BA, Niehuis O, Hedley A, Gadau J, Shuker DM (2010) The distribution of microsatellites in the Nasonia parasitoid wasp genome. Insect Mol Biol 19:91–98

    CAS  PubMed  Google Scholar 

  • Paspati A, Ferguson KB, Verhulst C, Urbaneja A, González-Cabrera J, Pannebakker BA (2019) Effects of mass rearing on the genetic diversity of the predatory mite Amblyseius swirskii. Entomol Exp Appl 167:670–681. https://doi.org/10.1111/eea.12811

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad V (1967) Biology of the predatory mite Phytoseiulus macropilis in Hawaii (Acarina: Phytoseiidae). Ann Entomol Soc Am 60:905–908

    Google Scholar 

  • Queiroz MCV, Sato ME (2016) Pyrethroid resistance in Phytoseiulus macropilis (Acari: Phytoseiidae): cross-resistance, stability and effect of synergists. Exp Appl Acarol 68:71–82

    CAS  PubMed  Google Scholar 

  • Roderick GK, Navajas M (2003) Genes in new environments: genetics and evolution in biological control. Nat Rev Genet 11:889–899

    Google Scholar 

  • Sabater-Muñoz B, Pascual-Ruiz S, Gómez-Martínez MA, Jacas JA, Hurtado MA (2012) Isolation and characterization of polymorphic microsatellite markers in Tetranychus urticae and cross amplification in other Tetranychidae and Phytoseiidae species of economic importance. Exp Appl Acarol 57:37–51

    PubMed  Google Scholar 

  • Sato ME, da Silva MZ, Gonçalves LR, de SouzaFilho MF, Raga A (2002) Toxicidade diferencial de agroquímicos a Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) e Tetranychus urticae Koch (Acari: Tetranychidae) em morangueiro. Neotrop Entomol 31:449–456

    CAS  Google Scholar 

  • Szpiech ZA, Rosenberg NA (2011) On the size distribution of private microsatellite alleles. Theor Popul Biol 80:100–113

    PubMed  PubMed Central  Google Scholar 

  • Telles MPC, Peixoto FP, Lima JS, Resende LV, Vianello RP, Walter MEMT, Collevatti RG (2011) Development of microsatellite markers for the endangered Neotropical tree species Tibouchina papyrus (Melastomataceae). Genet Mol Res 10:321–325

    CAS  PubMed  Google Scholar 

  • Tixier MS, Kreiter S, Auger P, Weber M (1998) Colonization of Languedoc vineyards by phytoseiid mites (Acari: Phytoseiidae): influence of wind and crop environment. Exp Appl Acarol 22:523–542

    Google Scholar 

  • Tixier MS, Kreiter S, Auger P (2000) Colonization of vineyards by phytoseiid mites: their dispersal patterns in the plot and their fate. Exp Appl Acarol 24:191–211

    CAS  PubMed  Google Scholar 

  • Tixier M-S, dos Santos V, Douin M, Duso C, Kreiter S (2017) Great molecular variation questions the status of the species Phytoseius finitimus (Acari: Phytoseiidae) and the barcoding decision diagnosis. Acarologia 57:493–515

    Google Scholar 

  • Uesugi R, Osakabe M (2007) Isolation and characterization of microsatellite loci in the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Mol Ecol Resour 7:290–292

    CAS  Google Scholar 

  • Uesugi R, Kunimoto Y, Osakabe M (2009a) The fine-scale genetic structure of the two-spotted spider mite in a commercial greenhouse. Exp Appl Acarol 47:99–109

    CAS  PubMed  Google Scholar 

  • Uesugi R, Sasawaki T, Osakabe M (2009b) Evidence of a high level of gene flow among apple trees in Tetranychus urticae. Exp Appl Acarol 49:281–290

    PubMed  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZQ (2003) Mites in greenhouse: identification, biology and control. CABI Publishing, Wallingford

    Google Scholar 

  • Zhao H, Yi X, Deng Y, Hu M, Zhong G, Wang P (2013) Resistance to fenpropathrin, chlorpyriphos and abamectin in different populations of Amblyseius longispinosus (Acari: Phytoseiidae) from vegetable crops in South China. Biol Control 67:61–65

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank FAPESP (São Paulo Research Foundation) for the funding received for this research (Processes 2016/06919; 2017/50334-3) and for the doctoral scholarship to the first author (Process 2015/26288-6) and postdoctoral fellowship to the second author (Process 2018/18527-9). Our thanks also go to CNPq-Brazil (National Council for Scientific and Technological Development – Brazil) for providing the research fellowships to the third and fourth authors. This study was financed in part by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil) – Finance Code 001.

Funding

FAPESP (São Paulo Research Foundation) provided funding for this research (Processes 2016/06919-4; 2017/50334-3), scholarship to the first author (Process 2015/26288-6) and PD fellowship to the second author (Process 2018/18527-9). CNPq-Brazil (National Council for Scientific and Technological Development – Brazil) provided the research fellowships to the third and fourth authors (Process: 306852/2019-5). This study was financed in part by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Maria Cristina Vitelli Queiroz.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Supplementary material 2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Queiroz, M.C.V., de Oliveira, F.A., de Souza, A.P. et al. Development of microsatellite markers for the predatory mite Phytoseiulus macropilis and cross-amplification in three other species of phytoseiid mites. Exp Appl Acarol 83, 1–12 (2021). https://doi.org/10.1007/s10493-020-00572-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-020-00572-5

Keywords

Navigation