Skip to main content

Advertisement

Log in

Vector-Borne Pathogens in Ectoparasites Collected from High-Elevation Pika Populations

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

The American pika, Ochotona princeps, is projected to decline throughout North America as climate change reduces its range, and pikas have already disappeared from several locations. In addition to climate, disease spillover from lower elevation mammalian species might affect pikas. We sampled pika fleas in Colorado and Montana across elevations ranging from 2896 to 3612 m and screened them for the presence of DNA from rodent-associated bacterial pathogens (Bartonella species and Yersinia pestis) to test the hypothesis that flea exchange between pikas and rodents may lead to occurrence of rodent-associated pathogens in pika ectoparasites. We collected 275 fleas from 74 individual pikas at 5 sites in Colorado and one site in Montana. We found that 5.5% of 275 pika fleas in this study tested positive for rodent-associated Bartonella DNA but that variation in Bartonella infection prevalence in fleas among sites was not driven by elevation. Specifically, we detected DNA sequences from two loci (gltA and rpoB) that are most similar to Bartonella grahamii isolates collected from rodents in Canada. We did not detect Y. pestis DNA in our survey. Our results demonstrate evidence of rodent-associated flea-borne bacteria in pika fleas. These findings are also consistent with the hypothesis that rodent-associated pathogens could be acquired by pikas. Flea-borne pathogen spillover from rodents to pikas has the potential to exacerbate the more direct effects of climate that have been suggested to drive pika declines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Allred DM (1952) Plague important fleas and mammals in Utah and the western United States. Great Basin Naturalist 12:11

    Google Scholar 

  • Bai Y, Kosoy MY, Cully JF, Thiagarajan B, Ray C, Collinge SK (2007) Acquisition of non-specific Bartonella strains by the northern grasshopper mouse (Onychomys leucogaster). FEMS Microbial Ecology 61:438-448.

    CAS  Google Scholar 

  • Bai Y, Kosoy MY, Martin A, Sheff K, Chalcraft L, Collinge SK (2008) Characterization of Bartonella strains isolated from black-tailed prairie dogs (Cynomys ludovicianus). Vector-borne and Zoonotic Diseases 8:1-6.

    PubMed  Google Scholar 

  • Bai Y, Calisher CH, Kosoy MY, Root JJ, Doty JB (2011) Persistent infection or successive reinfection of deer mice with Bartonella vinsonii subsp. arupensis? Applied and Environmental Microbiology 77:1728-1731.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beever EA, Brussard PF, Berger J (2003) Patterns of apparent extirpation among isolate populations of pikas (Ochotona princeps) in the Great Basin. Journal of Mammalogy 84:37-54.

    Google Scholar 

  • Berglund EC, Ehrenborg C, Pettersson OV, Granberg F, Naslund K, Holmberg M, Andersson SG (2010a) Genome dynamics of Bartonella grahamii in micro-populations of woodland rodents. BMC Genomics 11:152

    PubMed  PubMed Central  Google Scholar 

  • Berglund EC, Ellegaard K, Granberg F, Xie Z, Maruyama S, Kosoy MY, Birtles RJ, Andersson SG (2010b) Rapid diversification by recombination in Bartonella grahamii from wild rodents in Asia contrasts with low levels of genomic divergence in Northern Europe and America. Molecular Ecology 19:2241-2255.

    CAS  PubMed  Google Scholar 

  • Biggins DE, Kosoy MY (2001) Influences of introduced plague on North American mammals: implications from ecology of plague in Asia. Journal of Mammalogy 82:906–916.

    Google Scholar 

  • Bown KJ (2004) Flea-borne Bartonella grahamii and Bartonella taylorii in bank voles. Emerging Infectious Diseases 10:684-687.

    PubMed  PubMed Central  Google Scholar 

  • Brinkerhoff RJ, Collinge SK, Ray C, Gage KL (2010) Rodent and flea abundance fail to predict a plague epizootic in black-tailed prairie dogs. Vector-borne and Zoonotic Diseases 10:47-52.

    PubMed  PubMed Central  Google Scholar 

  • Brinkerhoff RJ, Kabeya H, Inoue K, Bai Y, Maruyama S (2010) Detection of multiple Bartonella species in digestive and reproductive tissues of fleas collected from sympatric mammals. The ISME Journal 4:955-958.

    PubMed  Google Scholar 

  • Buffet JP, Kosoy M, Vayssier-Taussat M (2013) Natural history of Bartonella-infecting rodents in light of new knowledge on genomics, diversity, and evolution. Future Microbiology 8:1117-1128.

    CAS  PubMed  Google Scholar 

  • Calkins MT, Beever EA, Boykin KG, Frey JK, Andersen MC (2012) Not- so- splendid isolation: modeling climate- mediated range collapse of a montane mammal Ochotona princeps across numerous ecoregions. Ecography 35:780–791.

    Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026.

    CAS  PubMed  Google Scholar 

  • Chomel BB, Boulouis HJm, Breitschwerdt EB, Kasten RW, Vayssier-Taussat M, Birtles RJ, Koehler JE, Dehio C (2009) Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors. Veterinary Research 40:1-22.

    Google Scholar 

  • Chouikha I, HInnebusch BJ (2012) Yersinia-flea interactions and the evolution of arthropod-borne transmission route of plague. Current Opinion in Microbiology 15:239-246.

    PubMed  PubMed Central  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, et al. (2013) Long-term Climate Change: Projections, commitments and irreversibility. IN Climate Change 2013: The Physical Science Basis, Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (editors) Cambridge, UK: Cambridge University Press, pp 1029-1136.

  • Diaz MH, Bai Y, Malania L, Winchell JM, Kosoy MY (2012) Development of a novel genus-specific real-time PCR assay for detection and differentiation of Bartonella species and genotypes. Journal of Clinical Microbiology 50:1645-1649.

    CAS  PubMed  PubMed Central  Google Scholar 

  • De la Cruz KD, Whiting MF (2003) Genetic and phylogeographic structure of populations of Pulex simulans (Siphonaptera) in Peru inferred from two genes (cytB and CoII). Parasitology Research 91:55-59.

    PubMed  Google Scholar 

  • Demas GE, Nelson RJ (1998) Photoperiod, ambient temperature, and food availability interact to affect reproductive and immune function in adult male deer mice (Peromyscus maniculatus). Journal of Biological Rhythms 13:253-262.

    CAS  PubMed  Google Scholar 

  • Dennis DT, Gage KL, Gratz NG, Poland JD, Tikhomirov E (1999) Plague Manual: epidemiology, distribution, surveillance, and control. Geneva, World Health Organization

    Google Scholar 

  • Eads RB, Campos EG (1983) Deer mouse, Peromyscus maniculatus, and associated rodent fleas (Siphonaptera) in the arctic-alpine life zone of Rocky Mountain National Park, Colorado. Great Basin Naturalist 43:168-174.

    Google Scholar 

  • Easterday WR, Kausrud KL, Star B, Heier L, Haley BJ, Ageyev V, Colwell RR, Stenseth NC (2012) An additional step in the transmission of Yersinia pestis? The ISME Journal 6:231-236.

    CAS  PubMed  Google Scholar 

  • Foley P, Roth T, Foley J, Ray C (2017) Rodent-pika parasite spillover in western North America. Journal of Medical Entomology 54:1251-1257.

    PubMed  Google Scholar 

  • Freed LA, Cann RL, Goff ML, Kuntz WA, Bodner GR (2005) Increase in avian malaria at upper elevation in Hawai’i. The Condor 107:753-764.

    Google Scholar 

  • Freeman BG, Scholer MN, Ruiz-Gutierrez V, Fitzpatrick JW (2018) Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proceedings of the National Academy of Sciences 115: 11982-11987; DOI: 10.1073/pnas.1804224115

    Article  CAS  Google Scholar 

  • Gage KL, Kosoy MY (2005) Natural history of plague: perspectives from more than a century of research. Annual Review of Entomology 50:505–528.

    CAS  PubMed  Google Scholar 

  • Gage KL, Bukrot TR, Eisen RJ, Hayes EB (2008) Climate and vector-borne diseases. American Journal of Preventive Medicine 35:436-450.

    PubMed  Google Scholar 

  • Galbreath KE, Hafner DJ, Zamudia KR (2009) When cold is better: climate-driven elevation shifts yield complex patterns of diversification and demography in an alpine specialist (American pika, Ochotona princeps). Evolution 63:2848–2863.

    CAS  PubMed  Google Scholar 

  • Galbreath KE, Hafner DJ, Zamudio KR, Agnew K (2010) Isolation and introgression in the Intermountain West: contrasting gene genealogies reveal the complex biogeographic history of the American pika (Ochotona princeps). Journal of Biogeography 37:344–362.

    Google Scholar 

  • Genchi C, Mortarino M, Rinaldi L, Cringoli G, Traldi G, Genchi M (2011) Changing climate and changing vectgor-borne disease distribution: the example of Dirofilaria in Europe. Veterinary Parasitology 176:295-299.

    PubMed  Google Scholar 

  • Gilbert MTP, Cuccui J, White W, Lynnerup N, Titball RW, Cooper A, Prentice MB (2004) Absence of Yersinia pestis-specific DNA in human teeth from five European excavations of putative plague victims. Microbiology 150:341-354.

    CAS  PubMed  Google Scholar 

  • Gilbert L (2010) Altitudinal patterns of tick and host abundance: a potential role for climate change in regulating tick-borne diseases? Oecologia 162:217-225.

    PubMed  Google Scholar 

  • Giorgi F, Hurrell J, Marinucci M, Beniston M. (1997) Elevation dependency of the surface climate change signal: a model study. Journal of Climate 10:288-296.

    Google Scholar 

  • Githeko AK, Lindsay SW, Confalonieri UE, Patz JA (2000) Climate change and vector-borne diseases: a regional analysis. Bulletin of the World Health Organization 78:1136-1147.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guralnick R (2007) Differential effects of past climate warming on mountain and flatland species distributions: a multispecies North American mammal assessment. Global Ecology and Biogeography 16:14-23.

    Google Scholar 

  • Halos L, Jamal T, Maillard R, Girard B, Guillot J, Chomel B, Vayssier-Taussat M, Boulouis HJ (2004) Role of Hippoboscidae flies as potential vectors of Bartonella spp. infecting wild and domestic ruminants. Applied and Environmental Microbiology 70:6302-6305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hänsch S, Cilli E, Catalano G, Gruppioni G, Bianucci R, Stenseth NC, Bramanti B, Pallen MJ (2015) The pla gene, encoding plasminogen activator, is not specific to Yersinia pestis. BMC research notes. 1:535.

    Google Scholar 

  • Hopkins GH, Rothchild M (1971) An Illustrated Catalogue of the Rothschild Collection of Fleas (Siphonaptera) in the British Museum of Natural History: Leptopsyllidae and Ancistropsyllidae. Trustees of the British Museum (Natural History).

  • Hubbard CA (1947) Fleas of Western North America. Their Relation to Public Health. Iowa State College Press, Ames Iowa.

    Google Scholar 

  • Inoue K, Kabeya H, Kosoy MY, Bai Y, Smirnov G, McColl D, Atsob H, Maruyama S (2009) Evolutional and geographic relationships of Bartonella grahamii isolates from wild rodents by multi-locus sequence analysis. Microbial Ecology 57:534-541.

    CAS  PubMed  Google Scholar 

  • Kabeya H, Inoue K, Izumi Y, Morita T, Imai S, Maruyama S (2011) Bartonella species in wild rodents and the infested fleas in Japan. Journal of Veterinary Medical Science 73:1561-1567.

    CAS  PubMed  Google Scholar 

  • Kalabukhov NL (1965) The structure and dynamics of natural foci of plague. Journal of Hygiene, Epidemiology, Microbiology, and Immunology 9:147–59.

    CAS  PubMed  Google Scholar 

  • Knap N, Duh D, Birtles R, Trilar T, Petrovec M, Avšič-Županc T (2007) Molecular detection of Bartonella species infecting rodents in Slovenia. Immunol Med Microbiol 50:45–50.

    CAS  Google Scholar 

  • Kosoy MY, Regnery RL, Kosaya OI, Jones DC, Marston EL, Childs JE (1998) Isolation of Bartonella spp. from embryos and neonates of naturally infected rodents. Journal of Wildlife Diseases 34:305-309.

    CAS  PubMed  Google Scholar 

  • Kucheruk VV (1960) Experience in classification of natural foci of plague in Holarctic Eurasia. Meditsinskaia Parazitologiia 28:5–15.

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870-1874.

    CAS  PubMed  Google Scholar 

  • Lenoir J, Svenning JC (2015) Climate-related range shifts–A global multidimensional synthesis and new research directions. Ecography 38:15–28.

    Google Scholar 

  • Li WD, Smith AT (2005) Dramatic decline of the threatened Ili pika Ochotona iliensis (Lagomorpha: Ochotonidae) in Xinjiang, China. Oryx 39:30-34.

    Google Scholar 

  • Macarthur RA, Wang LCH (1973) Physiology of thermoregulation in the pika, Ochotona princeps. Canadian Journal of Zoology 51:11-16.

    CAS  PubMed  Google Scholar 

  • Maher SP, Timm RM. (2014) Patterns of host and flea communities along an elevational gradient in Colorado. Canadian Journal of Zoology 92:433-442.

    Google Scholar 

  • Merritt JF, Merritt JM (1978) Population ecology and energy relationships of Clethrionomys gapperi in a Colorado subalpine forest. Journal of Mammalogy 59:576-598.

    Google Scholar 

  • Morick D, Krasnov BR, Khokhlova IS, Gottlieb Y, Harrus S (2013a) Transmission dynamics of Bartonella sp. Strain OE 1-1 in Sundevall’s jirds (Meriones crassus). Applied and Environmental Microbiology 79:1258-1264.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morick D, Krasnov BR, Khokhlova IS, Gutierrez R, Fielden LJ, Gottlieb Y, Harrus S (2013b) Effects of Bartonella spp. on flea feeding and reproductive performance. Applied and Environmental Microbiology 79:3438-3843.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small mammal communities in Yosemite National Park, USA. Science 322:261-264.

    CAS  PubMed  Google Scholar 

  • Morrison SF, Hik DS (2007) Demographic analysis of a declining pika (Ochotona collaris) population: linking survival to broad-scale climate patterns via spring snowmelt patterns. Journal of Animal Ecology 76:899-907.

    PubMed  Google Scholar 

  • Norman AF, Regnery R, Jameson P, Greene C, Krause DC (1995) Differentiation of Bartonella-like isolates at the species level by PCR-restriction fragment length polymorphism in the citrate synthase gene. Journal of Clinical Microbiology 33:1797-1803.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oksi J, Rantala S, Kilpinen S, Silvennoinen R, Vornanen M, Veikkolainen V, Eerola E, Pullianinen AT (2013) Cat scratch disease caused by Bartonella grahamii in an immunocompromised patient. Journal of Clinical Microbiology 51:2781-2784.

    PubMed  PubMed Central  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology and Evolutionary Systematics 37:637-669.

    Google Scholar 

  • Pauchard A, Milbau A, Albihn A, Alexander J, Burgess T, Daehler C, Englund G, Essi F, Evengard B, Greenwood GB, Haider S (2016) Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biological Invasions 18:345-353.

    Google Scholar 

  • Pedersen AB, Greives TJ (2008) The interaction of parasites and resources cause crashes in a wild mouse population. Journal of Animal Ecology 77:370-377.

    PubMed  Google Scholar 

  • Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsyth N, Fowler G, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schoner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ (2015) Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5:424-430. doi: 10.1038/NCLIMATE2563

    Article  Google Scholar 

  • Putman RJ, Edwards PJ, Mann JCE, How RC, Hill SD (1989) Vegetational and faunal changes in an area of heavily grazed woodland following relief of grazing. Biological Conservation 47:13-32.

    Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org.

  • Rao HX, Yu J, Guo P, Ma YC, Liu QY, Jiao M, Ma ZW, Ge H, Wang CX, Song XP, Shi Y (2015) Bartonella species detected in the plateau pikas (Ochotona curzoiae) from Qinghai Plateau in China. Biomedical and Environmental Sciences 28:674-678.

    PubMed  Google Scholar 

  • Ray C, Beever E, Loarie S (2012) Retreat of the American pika: up the mountain or into the void? IN Wildlife Conservation in a Changing Climate. University of Chicago Press, Chicago IL pp. 245-270.

    Google Scholar 

  • Sariyeva G, Bazarkanova G, Maimulov R, Abdikarimov S, Kurmanov B, Abdirassilova A, Shabunin A, Sagiyev Z, Dzhaparova A, Abdel Z, Mussagaliyeva R, Morand S, Motin V, Kosoy M. (2019) Marmots and Yersinia pestis strains in two plague endemic areas of the Tien Shan Mountains. Frontiers in Veterinary Science. 10.3389/fvets.2019.00207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwalm D, Epps CW, Rodhouse TJ, Monahan WB, Castillo JA, Ray C, Jeffress MR (2016) Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Global Change Biology 22:1572-1584.

    PubMed  Google Scholar 

  • Shchekunova ZI, Demin YP, Demnia GI (1964) Plague epizootic among Ochotona in western Mongolia. US Army Biological Center, Fort Detrick, Frederick, Maryland.

    Google Scholar 

  • Smith AT (1974) The distribution and dispersal of pikas: influences of behavior and climate. Ecology 55:1368-1376.

    Google Scholar 

  • St Romain KS, Tripp DW, Salkeld DJ, Antolin MF (2013) Duration of plague (Yersinia pestis) outbreaks in black-tailed prairie dog (Cynomys ludvicianus) colonies of northern Colorado. EcoHealth 10:241-245.

    PubMed  Google Scholar 

  • Taylor CH, Wanelik KM, Friberg IM, Lowe A, Hall A J, Ralli C, Birtles RJ, Begon M, Paterson S, Jackson JA, Bradley JE (2018) Physiological, but not fitness, effects of two interacting haemoparasitic infections in a wild rodent. International journal for parasitology 48: 463-471.

    PubMed  Google Scholar 

  • Thiagarajan B, Cully JF, Loughlin TM, Montenieri JA, Gage KL (2008) Geographic variation in rodent-flea relationships in the presence of black-tailed prairie dog colonies. Journal of Vector Ecology 33:178-191.

    PubMed  Google Scholar 

  • Tingley MW, Koo MS, Moritz C, Rush AC, Beissinger SR (2012) The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Global Change Biology 18:3279–3290.

    Google Scholar 

  • Van Riper C, van Riper SG, Goff ML, Laird M (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecological Monographs 56:327-344

    Google Scholar 

  • Vaughn, JW (2013) The parasite fauna of three sympatric Montana rodents. Master’s Thesis, Western Illinois University. ProQuest Dissertations & Theses Global, document ID 1433925673.

  • Vezzulli L, Colwell RR, Pruzzo C (2013) Ocean warming and the spread of pathogenic vibrios in the aquatic environment. Microbial Ecology 65:817-825.

    PubMed  Google Scholar 

  • Woodhams DC, Kilburn VL, Reinart LK, Voyles J, Medina D, Ibanez R, Hyatt AD, Boyle DG, Pask JD, Green DM, Rollins-Smith LA (2008) Chytridiomycosis and amphibian population declines continue to spread eastward in Panama. EcoHealth 5:268-274.

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the many students and volunteers who trapped pikas and collected fleas with us. Funding for this project was provided, in part, by a summer Spider Fellowship to HSR from the University of Richmond and a Fulbright Scholar Award to RJB. Undergraduate participation was further funded by the University of Colorado-Boulder Biological Sciences Initiative and the National Science Foundation (NSF) Research Experience for Undergraduates program. CR was supported by the Niwot Ridge Long Term Ecological Research project through NSF Cooperative Agreements DEB-1027341 and DEB-1637686. Additional technical and in-kind support was provided by the University of Colorado-Boulder Mountain Research Station (MRS) and Institute of Arctic and Alpine Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jory Brinkerhoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brinkerhoff, R.J., Rinsland, H.S., Sato, S. et al. Vector-Borne Pathogens in Ectoparasites Collected from High-Elevation Pika Populations. EcoHealth 17, 333–344 (2020). https://doi.org/10.1007/s10393-020-01495-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-020-01495-8

Keywords

Navigation