Skip to main content

Advertisement

Log in

High-level expression of a β-mannanase (manB) in Pichia pastoris GS115 for mannose production with Penicillium brevicompactum fermentation pretreatment of soybean meal

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

An endo-1,4-β-mannanase gene (manB) from a Bacillus pumilus Nsic-2 grown in a stinky tofu emulsion was cloned and expressed in Pichia pastoris GS115. After characterized, the endo-1,4-β-mannanase (manB) show maximum activity at pH 6.0 and 50 °C with LBG as substrate and perform high stability at a range of pH 6–8. After applying for a shake flask fermentation, the specific activity of manB reached 3462 U/mg. To produce mannose, the soybean meal (SBM) was pretreated by biological fermentation for 11 days with Penicillium brevicompactum, and then hydrolyzed by manB. As a result, mannose yield reached 3.58 g per 1 kg SBM which indicated that 0.358% SBM was converted into mannose after hydrolyzation, and mean a total 20% mannan of SBM converting into mannose, while the control group demonstrated only 1.78% conversion. An effective β-mannanase for the bioconversion of mannan-rich biomasses and an efficient method to produce mannose with soybean meal were introduced.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saha BC (2003) J Ind Microbiol Biotechnol 30(5):279–291

    CAS  PubMed  Google Scholar 

  2. Kuhad RC, Singh A, Eriksson KEL (1997) In: Eriksson KEL et al (eds) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Springer, Berlin, Heidelberg

    Google Scholar 

  3. Moreira LRS, Filho EXF (2008) Appl Microbiol Biotechnol 79:165–178

    CAS  PubMed  Google Scholar 

  4. Sittikijyothin W, Torres D, Gonçalves MP (2005) Carbohyd Polym 59:339–350

    CAS  Google Scholar 

  5. Mendoza NS, Arai M, Kawaguchi T, Cubol FS, Panerio EG, Yoshida T, Joson LM (1994) World J Microbiol Biotechnol 10(1):51–54

    CAS  PubMed  Google Scholar 

  6. Benech RO, Li X, Patton D, Powlowski J, Storms R, Bourbonnais R, Tsang A (2007) Enzyme Microb Technol 41(6–7):740–747

    CAS  Google Scholar 

  7. Sallam AE, Almisherfi HM, El‐Feky MMM et al (2020) Aquaculture Nutrition

  8. Mohapatra BR (2020) Biomass Convers Biorefinery

  9. Jiang Z, Wei Y, Li D, Li L, Chai P, Kusakabe I (2006) Carbohyd Polym 66(1):88–96

    CAS  Google Scholar 

  10. Favaro CP, Baraldi IJ, Casciatori FP et al (2020) Biomolecules 10(2):227

    CAS  PubMed Central  Google Scholar 

  11. Ikehara Y, Kojima N (2007) Curr Opin Mol Ther 9(1):53–61

    CAS  PubMed  Google Scholar 

  12. Assreuy AMS, Shibuya MDD, Martins GJ, De Souza MLP, Cavada BS, Moreira RA, Flores CA (1997) Mediat Inflamm 6(3):201–210

    CAS  Google Scholar 

  13. Vuksan V, Jenkins DJ, Spadafora P, Sievenpiper JL, Owen R, Vidgen E, Bruce-Thompson C (1999) Diabetes Care 22(6):913–919

    CAS  PubMed  Google Scholar 

  14. Hu X, Shi Y, Zhang P, Miao M, Zhang T, Jiang B (2016) Compr Rev Food Sci Food Saf 15(4):773–785

    PubMed  Google Scholar 

  15. El-Nakkady SS, Hanna MM, Roaiah HM, Ghannam IA (2012) Eur J Med Chem 47:387–398

    CAS  PubMed  Google Scholar 

  16. De Lonlay P, Seta N (2009) Biochim Biophys Acta (BBA) Mol Basis Dis 1792(9):841–843

    Google Scholar 

  17. Vorapreeda T, Thammarongtham C, Cheevadhanarak S, Laoteng K (2015) Microbiology 161(8):1613–1626

    CAS  PubMed  Google Scholar 

  18. Su J, Li DS, Yan T, Wang JH (2007) J Microbiol 5:7

    Google Scholar 

  19. Bågenholm V, Wiemann M, Reddy SK, Bhattacharya A, Rosengren A, Logan DT, Stålbrand H (2019) J Biol Chem 294(23):9100–9117

    PubMed  PubMed Central  Google Scholar 

  20. Zhao D, Wang Y, Na J, Ping W, Ge J (2019) Prep Biochem Biotechnol 49(2):202–207

    CAS  PubMed  Google Scholar 

  21. Nadaroglu H, Adiguzel G, Adiguzel A, Sonmez Z (2017) Eur Food Res Technol 243(2):193–201

    CAS  Google Scholar 

  22. Zheng H, Yu Z, Fu X, Li S, Xu J, Song H, Ma Y (2016) J Ind Microbiol Biotechnol 43(7):977–987

    CAS  PubMed  Google Scholar 

  23. Chen S, Gray D, Ma J, Subramanian S (1998) Curr Protoc Protein Sci 12(1):5–10

    Google Scholar 

  24. Chittibabu G, Nath K, Das D (2006) Process Biochem 41(3):682–688

    CAS  Google Scholar 

  25. Chen L, Mohsin A, Chu J, Zhuang Y, Liu Y, Guo M (2017) Biotechnol Bioprocess Eng 22(6):767–773

    CAS  Google Scholar 

  26. Baghban R, Farajnia S, Ghasemi Y, Mortazavi M, Zarghami N, Samadi N (2018) Curr Pharm Biotechnol 19(6):451–467

    CAS  PubMed  Google Scholar 

  27. Bracke A, Hoogewijs D, Dewilde S (2018) Anal Biochem 543:62–70

    CAS  PubMed  Google Scholar 

  28. Ahmad M, Hirz M, Pichler H, Schwab H (2014) Appl Microbiol Biotechnol 98(12):5301–5317

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Arsenault RJ, Lee JT, Latham R, Carter B, Kogut MH (2017) Poult Sci 96(12):4307–4316

    CAS  PubMed  Google Scholar 

  30. LaFrance JT (2008) J Economet 147(2):336–349

    Google Scholar 

  31. National Research Council (US) (2000) Biobased Industrial Products: Priorities for Research and Commercialization. National Academies Press (US), Washington (DC)

  32. Cao G, Ximenes E, Nichols NN, Zhang L, Ladisch M (2013) Biores Technol 146:604–610

    CAS  Google Scholar 

  33. Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez ÁT, Martínez MJ (2011) Biores Technol 102(16):7500–7506

    Google Scholar 

  34. Thangaraj B, Solomon PR (2019) ChemBioEng Reviews 6(5):157–166

    CAS  Google Scholar 

  35. Shakeel T, Gupta M, Fatma Z, Kumar R, Kumar R, Singh R, Yazdani SS (2018) J Biol Chem 293(24):9148–9161

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen S-Q, Cai X-H, Xie J-L, et al (2017) Starch‐Strke 69(1–2)

  37. Norizan NABM, Halim M, Tan JS et al (2020) Molecules 25(15):3516

    CAS  PubMed Central  Google Scholar 

  38. Park, Jungwoo, Knape et al (2019) J Appl Poultry Res 28(2):447–453

  39. Lowry OH, Rosebrough NJ, Farr AL et al (1951) J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  40. Xie J, Pan L, He Z et al (2020) Process Biochem 88(Jan.):51–59

    CAS  Google Scholar 

  41. Li Z, Yu Y, Sun J, Li D, Huang Y, Feng Y (2016) BioRes 11(1):54–70

    CAS  Google Scholar 

  42. Palomo JM, Muñoz G, Fernández-Lorente G, Mateo C, Fuentes M, Guisan JM, Fernández-Lafuente R (2003) J Mol Catal B Enzym 21(4–6):201–210

    CAS  Google Scholar 

  43. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Enzyme Microb Technol 40(6):1451–1463

    CAS  Google Scholar 

  44. Shukor H, Abdeshahian P, Al-Shorgani NKN, Hamid AA, Rahman NA, Kalil MS (2016) Bioresour Technol 218:257–264

    CAS  PubMed  Google Scholar 

  45. Hu R, Lin L, Liu T, Ouyang P, He B, Liu S (2008) J Biobased Mater Bioenergy 2(2):156–161

    Google Scholar 

  46. Miller GL (1959) Anal Chem 31(3):426–428

    CAS  Google Scholar 

  47. Lei X, Sun G, Xie J, Wei D (2013) Int J Syst Evol Microbiol 63(7):2501–2505

    CAS  PubMed  Google Scholar 

  48. Zhou C, Xue Y, Ma Y (2018) Microb Cell Fact 17(1):124

    PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Shu T, Fan P, Zhang H, Turunen O, Xiong H, Yu L (2017) Process Biochem 61:73–79

    CAS  Google Scholar 

  50. Pan X, Zhou J, Tian A, Le K, Yuan H, Xue Y, Lu H (2011) Biotechnol Lett 33(3):565–570

    CAS  PubMed  Google Scholar 

  51. Pradeep GC, Cho SS, Choi YH, Choi YS, Jee JP, Seong CN, Yoo JC (2016) World J Microbiol Biotechnol 32(5):84

    CAS  Google Scholar 

  52. Srivastava PK, Kapoor M (2017) Biotechnol Adv 35(1):1–19

    CAS  PubMed  Google Scholar 

  53. Germec M, Demirel F, Tas N, Ozcan A, Yilmazer C, Onuk Z, Turhan I (2017) Cellulose 24(10):4337–4353

    CAS  Google Scholar 

  54. Mathew AK, Parameshwaran B, Sukumaran RK, Pandey A (2016) Biores Technol 199:13–20

    CAS  Google Scholar 

  55. Li YX, Yi P, Liu J, Yan QJ, Jiang ZQ (2018) Bioresour Technol 256:30–37

    CAS  PubMed  Google Scholar 

  56. Salvachúa D, Prieto A, López-Abelairas M et al (2011) Bioresour Technol 102(16):7500–7506

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wei.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1580 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wang, J., Lin, L. et al. High-level expression of a β-mannanase (manB) in Pichia pastoris GS115 for mannose production with Penicillium brevicompactum fermentation pretreatment of soybean meal. Bioprocess Biosyst Eng 44, 549–561 (2021). https://doi.org/10.1007/s00449-020-02467-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02467-6

Keywords

Navigation