Skip to main content
Log in

Inverse Compton Scattering of Radiation from a Central Source as a Possible Mechanism for the Formation of X-Ray Radiation from Kiloparsec Jets of Core-Dominated Quasars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

For the interpretation of X-ray radiation from kiloparsec jets of quasars, the inverse Compton scattering of the cosmic microwave background has been widely used for almost 20 years. A recent analysis of the Fermi-LAT observational data showed that this assumption is inapplicable for jets of several quasars. In this paper, we consider the inverse Compton scattering of photons from a central source as a possible mechanism for the formation of X-ray radiation from kiloparsec jets of the quasars PKS 0637–752, 3C 273, PKS 1510–089, and PKS 1045–188. Estimates of the angle between the line of sight and the velocity of kiloparsec jets are obtained. The predicted gamma-ray flux for all objects turned out to be below the upper limit on the flux from a kiloparsec jet obtained from the Fermi-LAT data. It is shown that our assumption about the mechanism of X-ray radiation from kiloparsec jets is consistent with all data of multiwavelength observations available to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Notes

  1. http://hea-www.harvard.edu/XJET/

  2. http://www.physics.purdue.edu/astro/MOJAVE/allsources.html

  3. \(\Delta {\text{PA}}\), \({{\theta }_{{{\text{pc}}}}}\), and \(\theta _{{{\text{pc}}}}^{{{\text{kpc}}}}\) in [25] are denoted as \(\eta \), \(\theta \), and \(\zeta \), respectively.

  4. http://ned.ipac.caltech.edu/

  5. The nomenclature reflects the belonging of the knots to the jet located west of the core and their angular distance from the core.

  6. Here, we adhere to the nomenclature of knots used in [58].

  7. Note that we do not distinguish the region located between the knots A and B2 as a separate knot, since it has a low intensity at all observed frequencies and the position of its peak brightness strongly depends on frequency. This behavior requires additional explanation, which is beyond the scope of this work.

REFERENCES

  1. D. A. Schwartz, H. L. Marshall, J. E. J. Lovell, B. G. Piner, et al., Astrophys. J. 540, 69 (2000).

    Article  ADS  Google Scholar 

  2. D. E. Harris and H. Krawczynski, Ann. Rev. Astron. Astrophys. 44, 463 (2006).

    Article  ADS  Google Scholar 

  3. F. Tavecchio, L. Maraschi, R. M. Sambruna, and C. M. Urry, Astrophys. J. 544, L23 (2000).

    Article  ADS  Google Scholar 

  4. A. Celotti, G. Ghisellini, and M. Chiaberge, Mon. Not. R. Astron. Soc. 321, L1 (2001).

    Article  ADS  Google Scholar 

  5. G. Chartas, D. M. Worrall, M. Birkinshaw, M. Cresitello-Dittmar, et al., Astrophys. J. 542, 655 (2000).

    Article  ADS  Google Scholar 

  6. R. M. Sambruna, J. K. Gambill, L. Maraschi, F. Tavecchio, R. Cerutti, C. C. Cheung, C. M. Urry, and G. Chartas, Astrophys. J. 608, 698 (2004).

    Article  ADS  Google Scholar 

  7. H. L. Marshall, D. A. Schwartz, J. E. J. Lovell, D. W. Murphy, et al., Astrophys. J. Suppl. 156, 13 (2005).

    Article  Google Scholar 

  8. B. S. Hogan, M. L. Lister, P. Kharb, H. L. Marshall, and N. J. Cooper, Astrophys. J. 730, 92 (2011).

    Article  ADS  Google Scholar 

  9. H. L. Marshall, J. M. Gelbord, D. A. Schwartz, D. W. Murphy, et al., Astrophys. J. Suppl. 193, 15 (2011).

    Article  Google Scholar 

  10. H. L. Marshall, J. M. Gelbord, D. M. Worrall, M. Birkinshaw, et al., Astrophys. J. 856, 66 (2018).

    Article  ADS  Google Scholar 

  11. E. T. Meyer, M. Georganopoulos, W. B. Sparks, L. Godfrey, J. E. J. Lovell, and E. Perlman, Astrophys. J. 805, 154 (2015).

    Article  ADS  Google Scholar 

  12. E. T. Meyer and M. Georganopoulos, Astrophys. J. 780, L27 (2014).

    Article  ADS  Google Scholar 

  13. M. S. Butuzova, Astron. Rep. 60, 313 (2016).

    Article  ADS  Google Scholar 

  14. A. Atoyan and C. D. Dermer, Astrophys. J. 613, 151 (2004).

    Article  ADS  Google Scholar 

  15. F. A. Aharonian, Mon. Not. R. Astron. Soc. 332, 215 (2002).

    Article  ADS  Google Scholar 

  16. Y. Y. Kovalev, K. I. Kellermann, M. L. Lister, D. C. Homan, et al., Astron. J. 130, 2473 (2005).

    Article  ADS  Google Scholar 

  17. M. S. Mikhailova, E. Y. Bannikova, and V. M. Kontorovich, Astron. Rep. 54, 481 (2010).

    Article  ADS  Google Scholar 

  18. M. S. Butuzova and A. B. Pushkarev, Astrophys. J. 883, 131 (2019).

    Article  ADS  Google Scholar 

  19. L. Stawarz, L. Ostorero, M. C. Begelman, R. Moderski, J. Kataoka, and S. Wagner, Astrophys. J. 680, 911 (2008).

    Article  ADS  Google Scholar 

  20. L. Ostorero, R. Moderski, L. Stawarz, A. Diaferio, et al., Astrophys. J. 715, 1071 (2010).

    Article  ADS  Google Scholar 

  21. G. Migliori, A. Siemiginowska, and A. Celotti, Astrophys. J. 749, 107 (2012).

    Article  ADS  Google Scholar 

  22. D. I. Nagirner and J. Poutanen, Single Compton Scattering (Harwood Academic, Amsterdam, 1994).

    MATH  Google Scholar 

  23. D. I. Nagirner and J. Poutanen, Astron. Astrophys. 379, 664 (2001).

    Article  ADS  Google Scholar 

  24. D. I. Nagirner, Astron. Lett. 20, 358 (1994).

    ADS  Google Scholar 

  25. J. E. Conway and D. W. Murphy, Astrophys. J. 411, 89 (1993).

    Article  ADS  Google Scholar 

  26. B P. G. Edwards, B. G. Piner, S. J. Tingay, J. E. J. Lovell, J. Kataoka, R. Ojha, and Y. Murata, Publ. Astron. Soc. Jpn. 58, 233 (2006).

    Article  ADS  Google Scholar 

  27. P. Kharb, M. L. Lister, and N. J. Cooper, Astrophys. J. 710, 764 (2010).

    Article  ADS  Google Scholar 

  28. M. L. Lister, D. C. Homan, T. Hovatta, K. I. Kellermann, et al., Astrophys. J. 874, 43 (2019).

    Article  ADS  Google Scholar 

  29. E. Komatsu, J. Dunkley, M. R. Nolta, C. L. Bennett, et al., Astrophys. J. Suppl. 180, 330 (2009).

    Article  Google Scholar 

  30. D. C. Homan, M. L. Lister, Y. Y. Kovalev, A. B. Pushkarev, T. Savolainen, K. I. Kellermann, J. L. Richards, and E. Ros, Astrophys. J. 798, 134 (2015).

    Article  ADS  Google Scholar 

  31. J. F. C. Wardle and S. E. Aaron, Mon. Not. R. Astron. Soc. 286, 425 (1997).

    Article  ADS  Google Scholar 

  32. T. G. Arshakian and M. S. Longair, Mon. Not. R. Astron. Soc. 351, 727 (2004).

    Article  ADS  Google Scholar 

  33. L. M. Mullin and M. J. Hardcastle, Mon. Not. R. Astron. Soc. 398, 1989 (2009).

    Article  ADS  Google Scholar 

  34. T. J. L. Courvoisier, Astron. Astrophys. Rev. 9, 1 (1998).

    Article  ADS  Google Scholar 

  35. M. Türler, S. Paltani, T. J. L. Courvoisier, M. F. Aller, et al., Astron. Astrophys. Suppl. Ser. 134, 89 (1999).

    Article  ADS  Google Scholar 

  36. A. W. B. J. Geldzahler, Astron. J. 86, 1306 (1981).

    Article  ADS  Google Scholar 

  37. A. Wright and R. Otrupcek, PKS Catalog–Parkes Southern Radio Source Catalog, Version 1.01 (1990).

  38. O. B. Slee, Austral. J. Phys. 48, 143 (1995).

    Article  ADS  Google Scholar 

  39. A. Adraou, R. Chini, M. Albrecht, R. Lemke, P. A. Shaver, L.-A. Nyman, and R. S. Booth, Astron. Astrophys. 376, 1123 (2001).

    Article  ADS  Google Scholar 

  40. M. G. Mingaliev, Y. V. Sotnikova, T. V. Mufakharov, A. K. Erkenov, and R. Y. Udovitskiy, Astrophys. Bull. 70, 264 (2015).

    Article  ADS  Google Scholar 

  41. E. L. Wright, X. Chen, N. Odegard, C. L. Bennett, et al., Astrophys. J. Suppl. 180, 283 (2009).

    Article  Google Scholar 

  42. B. Vollmer, B. Gassmann, S. Derriére, T. Boch, et al., Astron. Astrophys. 511, A53 (2010).

    Article  Google Scholar 

  43. W. K. Gear, J. A. Stevens, D. H. Hughes, S. J. Litchfield, et al., Mon. Not. R. Astron. Soc. 267, 167 (1994).

    Article  ADS  Google Scholar 

  44. T. Hovatta, E. Nieppola, M. Tornikoski, E. Valtaoja, M. F. Aller, and H. D. Aller, Astron. Astrophys. 485, 51 (2008).

    Article  ADS  Google Scholar 

  45. M. Moshir, G. Kopan, T. Conrow, H. McCallon, et al., The IRAS Faint Source Catalog, Version 2 (1990).

  46. C S. J. Tingay, D. L. Jauncey, E. A. King, A. K. Tzioumis, J. E. J. Lovell, and P. G. Edwards, Publ. Astron. Soc. Jpn. 55, 351 (2003).

    Article  ADS  Google Scholar 

  47. A. M. Burgess and R. W. Hunstead, Astron. J. 131, 114 (2006).

    Article  ADS  Google Scholar 

  48. H. L. Marshall, D. E. Harris, J. P. Grimes, J. J. Drake, et al., Astrophys. J. 549, L167 (2001).

    Article  ADS  Google Scholar 

  49. R. M. Sambruna, C. M. Urry, F. Tavecchio, L. Maraschi, R. Scarpa, G. Chartas, and T. Muxlow, Astrophys. J. 549, L161 (2001).

    Article  ADS  Google Scholar 

  50. C. C. Cheung, L. Stawarz, and A. Siemiginowska, Astrophys. J. 650, 679 (2006).

    Article  ADS  Google Scholar 

  51. K. T. Mehta, M. Georganopoulos, E. S. Perlman, C. A. Padgett, and G. Chartas, Astrophys. J. 690, 1706 (2009).

    Article  ADS  Google Scholar 

  52. Y. Uchiyama, C. M. Urry, J. van Duyne, C. C. Cheung, R. M. Sambruna, T. Takahashi, F. Tavecchio, and L. Maraschi, Astrophys. J. 631, L113 (2005).

    Article  ADS  Google Scholar 

  53. A. B. Pushkarev, T. Hovatta, Y. Y. Kovalev, M. L. Lister, A. P. Lobanov, T. Savolainen, and J. A. Zensus, Astron. Astrophys. 545, A113 (2012).

    Article  ADS  Google Scholar 

  54. R. G. Conway, S. T. Garrington, R. A. Perley, and J. A. Biretta, Astron. Astrophys. 267, 347 (1993).

    ADS  Google Scholar 

  55. R. A. Perley and K. Meisenheimer, Astron. Astrophys. 601, A35 (2017).

    Article  ADS  Google Scholar 

  56. Y. Uchiyama, C. M. Urry, C. C. Cheung, S. Jester, et al., Astrophys. J. 648, 910 (2006).

    Article  ADS  Google Scholar 

  57. J. N. Bahcall, S. Kirhakos, D. P. Schneider, R. J. Davis, T. W. B. Muxlow, S. T. Garrington, R. G. Conway, and S. C. Unwin, Astrophys. J. 452, L91 (1995).

    Article  ADS  Google Scholar 

  58. S. Jester, H. J. Röser, K. Meisenheimer, R. Perley, and R. Conway, Astron. Astrophys. 373, 447 (2001).

    Article  ADS  Google Scholar 

  59. S. Jester, H. J. Röser, K. Meisenheimer, and R. Perley, Astron. Astrophys. 431, 477 (2005).

    Article  ADS  Google Scholar 

  60. D. E. Harris and C. P. Stern, Astrophys. J. 313, 136 (1987).

    Article  ADS  Google Scholar 

  61. H. J. Röser, K. Meisenheimer, M. Neumann, R. G. Conway, and R. A. Perley, Astron. Astrophys. 360, 99 (2000).

    ADS  Google Scholar 

  62. S. Jester, D. E. Harris, H. L. Marshall, and K. Meisenheimer, Astrophys. J. 648, 900 (2006).

    Article  ADS  Google Scholar 

  63. S. Jester, K. Meisenheimer, A. R. Martel, E. S. Perlman, and W. B. Sparks, Mon. Not. R. Astron. Soc. 380, 828 (2007).

    Article  ADS  Google Scholar 

  64. C. P. O’Dea, R. Barvainis, and P. M. Challis, Astron. J. 96, 435 (1988).

    Article  ADS  Google Scholar 

  65. F. Acero, M. Ackermann, M. Ajello, A. Albert, et al., Astrophys. J. Suppl. 218, 23 (2015).

    Article  Google Scholar 

  66. F. Massaro, D. E. Harris, and C. C. Cheung, Astrophys. J. Suppl. 197, 24 (2011).

    Article  ADS  Google Scholar 

  67. A. A. Abdo, M. Ackermann, M. Ajello, A. Allafort, et al., Astrophys. J. 715, 429 (2010).

    Article  ADS  Google Scholar 

  68. J. L. Gómez, A. P. Lobanov, G. Bruni, Y. Y. Kovalev, et al., Astrophys. J. 817, 96 (2016).

    Article  ADS  Google Scholar 

  69. A. M. Kutkin, I. N. Pashchenko, M. M. Lisakov, P. A. Voytsik, et al., Mon. Not. R. Astron. Soc. 475, 4994 (2018).

    Article  ADS  Google Scholar 

  70. S. V. Pilipenko, Y. Y. Kovalev, A. S. Andrianov, U. Bach, et al., Mon. Not. R. Astron. Soc. 474, 3523 (2018).

    Article  ADS  Google Scholar 

  71. L. Vega-García, A. P. Lobanov, M. Perucho, G. Bruni, et al., arXiv:1912.00925 [astro-ph.GA] (2019).

  72. E. V. Kravchenko, J. L. Gómez, Y. Y. Kovalev, and P. A. Voitsik, Adv. Space Res. 65, 720 (2020).

    Article  ADS  Google Scholar 

  73. Y. Y. Kovalev, N. S. Kardashev, K. I. Kellermann, A. P. Lobanov, et al., Astrophys. J. 820, L9 (2016).

    Article  ADS  Google Scholar 

  74. B. G. Piner, A. B. Pushkarev, Y. Y. Kovalev, C. J. Marvin, et al., Astrophys. J. 758, 84 (2012).

    Article  ADS  Google Scholar 

Download references

Funding

This work was partly supported by the Russian Foundation for Basic Research, project no. 18-32-00824. Within this project, for all the objects under consideration, approximations of the CS’s spectra were obtained, the density of emitting electrons and the magnetic field strength at the knots of the kpc-scale jets were estimated, the angles with the line of sight and the velocities of the kpc-scale jets were determined, and the spectrum of radiation due to IC/CS was simulated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Butuzova, A. B. Pushkarev, E. S. Shablovinskaya or S. V. Nazarov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butuzova, M.S., Pushkarev, A.B., Shablovinskaya, E.S. et al. Inverse Compton Scattering of Radiation from a Central Source as a Possible Mechanism for the Formation of X-Ray Radiation from Kiloparsec Jets of Core-Dominated Quasars. Astron. Rep. 64, 894–914 (2020). https://doi.org/10.1134/S1063772920110025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920110025

Navigation