Skip to main content

Advertisement

Log in

Multi-Objective Modified Grey Wolf Optimization Algorithm for Efficient Spectrum Sensing in the Cognitive Radio Network

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

With the advancement toward 6G technology, mobile data growth is estimated to increase many fold. There will also be an increase in the control plane load (IoT, IoE). Such problems call for the technologies that can efficiently utilize the resources to optimize the system performance, and the possible solution is cognitive radio technology. As the spectrum sensing is the key enabler of cognitive radio technology, in this paper, the multi-objective parameters defining the efficiency of spectrum sensing for a cognitive radio network (CRN), which are throughput, interference, and energy efficiency, defined in terms of sensing time, power allocation, and detection threshold are dealt. In this paper, a novel Multi-Objective Modified Grey Wolf Optimization (MOMGWO) algorithm is proposed to solve the multi-objective optimization problem in the field of spectrum sensing in a cognitive radio network which is an important paradigm in wireless communication technology. Modification in Grey Wolf Optimization (GWO) is applied to balance the trade-off between exploration and exploitation process in conventional GWO, to obtain global optima. Modification is introduced in terms of mutation in leader selection, discrimination weight, and mutation coefficient. The non-dominated solution set of the proposed algorithm is compared with the existing algorithms like Non-dominated Sorting Genetic Algorithm (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO), Multi-Objective Cat Swarm Optimization (MOCSO), and conventional Multi-Objective Grey Wolf Optimization (MOGWO) algorithm. The simulation result shows that the proposed MOMGWO has outperformed the existing algorithms with respect to the quality of the Pareto front. Thus, the best solutions for the spectrum sensing parameters in optimizing multi-objective problems for cognitive radio network can be obtained via the proposed MOMGWO algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Xiang, W.; Zheng, K.; Shen, X.S.: 5G Mobile Communications. Springer, New York (2016)

    Google Scholar 

  2. Force F.S.P.T.: Report of the spectrum efficiency working group. http://www.fcc.gov/sptf/files/SEWGFinalReport_1.pdf (2002)

  3. Attiah, M.L.; Isa, A.A.M.; Zakaria, Z.; Abdulhameed, M.; Mohsen, M.K.; Ali, I.: A survey of mmwave user association mechanisms and spectrum sharing approaches: an overview, open issues and challenges, future research trends. Wireless Netw. 26, 2487–2514 (2020)

    Google Scholar 

  4. Eappen, G.; Shankar, T.: Hybrid PSO-GSA for energy efficient spectrum sensing in cognitive radio network. Phys. Commun. (2020). https://doi.org/10.1016/j.phycom.2020.101091

  5. Tsiropoulos, G.I.; Yadav, A.; Zeng, M.; Dobre, O.A.: Cooperation in 5G hetnets: Advanced spectrum access and D2D assisted communications. IEEE Wirel. Commun. 24(5), 110–117 (2017)

    Google Scholar 

  6. Almalfouh, S.M.; Stuber, G.L.: Joint spectrum-sensing design and power control in cognitive radio networks: a stochastic approach. IEEE Trans. Wireless Commun. 11(12), 4372–4380 (2012)

    Google Scholar 

  7. Pang, J.; Scutari, G.: Joint sensing and power allocation in nonconvex cognitive radio games: quasi-nash equilibria. IEEE Trans. Signal Process. 61(9), 2366–2382 (2013)

    MATH  Google Scholar 

  8. Proakis, J.G.; Salehi, M.: Digital Communications. plus 05e.m minus 0.4em, vol. 4. McGraw-Hill, New York (2001)

    Google Scholar 

  9. Yucek, T.; Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 11(1), 116–130 (2009)

    Google Scholar 

  10. Zeng, Y.; Liang, Y.-C.: Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans. Commun. 57(6), 1784–1793 (2009)

    Google Scholar 

  11. Urkowitz, H.: Energy detection of unknown deterministic signals. Proc. IEEE 55(4), 523–531 (1967)

    Google Scholar 

  12. Shreejith, S.; Mathew, L.K.; Prasad, V.A.; Fahmy, S.A.: Efficient spectrum sensing for aeronautical LDACS using low-power correlators. IEEE Trans. Very Large Scale Integr. VLSI Syst. 26(6), 1183–1191 (2018)

    Google Scholar 

  13. Subhedar, M.; Birajdar, G.: Spectrum sensing techniques in cognitive radio networks: a survey. Int. J. Next-Gen. Netw. 3(2), 37–51 (2011)

    Google Scholar 

  14. Li, M.; Hei, Y.; Qiu, Z.: Optimization of multiband cooperative spectrum sensing with modified artificial bee colony algorithm. Appl. Soft Comput. 57, 751–759 (2017)

    Google Scholar 

  15. Mili, M.R.; Musavian, L.: Interference efficiency: a new metric to analyze the performance of cognitive radio networks. IEEE Trans. Wireless Commun. 16(4), 2123–2138 (2017)

    Google Scholar 

  16. Liang, Y.-C.; Zeng, Y.; Peh, E.C.; Hoang, A.T.: Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans. Wireless Commun. 7(4), 1326–1337 (2008)

    Google Scholar 

  17. Shi, Z.; Teh, K.C.; Li, K.H.: Energy-efficient joint design of sensing and transmission durations for protection of primary user in cognitive radio systems. IEEE Commun. Lett. 17(3), 565–568 (2013)

    Google Scholar 

  18. Kulkarni, K.; Banerjee, A.: Multi-channel sensing and resource allocation in energy constrained cognitive radio networks. Phys. Commun. 23, 12–19 (2017)

    Google Scholar 

  19. Chen Y., Zhang S., Xu S., Li G.Y.: Fundamental tradeoffs on green wireless networks. arXiv preprint arXiv:1101.4343 (2011)

  20. Thakur, P.; Kumar, A.; Pandit, S.; Singh, G.; Satashia, S.: Performance analysis of cooperative spectrum monitoring in cognitive radio network. Wirel. Netw. (2019). https://doi.org/10.1007/s11276-017-1644-5

  21. Shaghluf, N.; Gulliver, T.A.: Spectrum and energy efficiency of cooperative spectrum prediction in cognitive radio networks. Wirel. Netw. 25, 3265–3274 (2019)

  22. Xu, W.; Zhou, X.; Lee, C.-H.; Feng, Z.; Lin, J.: Energy-efficient joint sensing duration, detection threshold, and power allocation optimization in cognitive OFDM systems. IEEE Trans. Wireless Commun. 15(12), 8339–8352 (2016)

    Google Scholar 

  23. Xu, W.; Zhou, X.; Lee, C.; Feng, Z.; Lin, J.: Energy-efficient joint sensing duration, detection threshold, and power allocation optimization in cognitive OFDM systems. IEEE Trans. Wireless Commun. 15(12), 8339–8352 (2016)

    Google Scholar 

  24. Li, L.; Zhou, X.; Xu, H.; Li, G.Y.; Wang, D.; Soong, A.C.: Energy-efficient transmission for protection of incumbent users. IEEE Trans. Broadcast. 57(3), 718–720 (2011)

    Google Scholar 

  25. Wu, Y.; Tsang, D.H.: Energy-efficient spectrum sensing and transmission for cognitive radio system. IEEE Commun. Lett. 15(5), 545–547 (2011)

    Google Scholar 

  26. Dang, H.V.; Kinsner, W.: An analytical multiobjective optimization of joint spectrum sensing and power control in cognitive radio networks. In: 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC). IEEE, pp. 39–48 (2015)

  27. Han, R.; Gao, Y.; Wu, C.; Lu, D.: An effective multi-objective optimization algorithm for spectrum allocations in the cognitive-radio-based internet of things. IEEE Access 6, 12858–12867 (2018)

    Google Scholar 

  28. Pradhan, P.M.; Panda, G.: Cooperative spectrum sensing in cognitive radio network using multiobjective evolutionary algorithms and fuzzy decision making. Ad Hoc Netw. 11(3), 1022–1036 (2013)

    Google Scholar 

  29. Celik, A.; Kamal, A.E.: Multi-objective clustering optimization for multi-channel cooperative spectrum sensing in heterogeneous green CRNS. IEEE Trans. Cogn. Commun. Netw. 2(2), 150–161 (2016)

    Google Scholar 

  30. Sonti, S.R.; Prasad, M.S.G.: Enhanced fuzzy c-means clustering based cooperative spectrum sensing combined with multi-objective resource allocation approach for delay-aware crns. IET Commun. 14(4), 619–626 (2019)

    Google Scholar 

  31. Balieiro, A.; Yoshioka, P.; Dias, K.; Cavalcanti, D.; Cordeiro, C.: A multi-objective genetic optimization for spectrum sensing in cognitive radio. Expert Syst. Appl. 41(8), 3640–3650 (2014)

    Google Scholar 

  32. Binitha, S.; Sathya, S.S.; et al.: A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. 2(2), 137–151 (2012)

    Google Scholar 

  33. Yang, X.-S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, New York (2010)

    Google Scholar 

  34. Hei, Y.; Li, W.; Fu, W.; Li, X.: Efficient parallel artificial bee colony algorithm for cooperative spectrum sensing optimization. Circuits Syst. Signal Process. 34(11), 3611–3629 (2015)

    Google Scholar 

  35. Azmat, F.; Chen, Y.; Stocks, N.: Bio-inspired collaborative spectrum sensing and allocation for cognitive radios. IET Commun. 9(16), 1949–1959 (2015)

    Google Scholar 

  36. Yang, X.-S.: Swarm intelligence based algorithms: a critical analysis. Evol. Intel. 7(1), 17–28 (2014)

    Google Scholar 

  37. Yang, X.-S.; Gandomi, A.H.; Talatahari, S.; Alavi, A.H.: Metaheuristics in water, geotechnical and transport engineering. Newnes (2012)

  38. Tandra, R.; Sahai, A.: SNR walls for signal detection. IEEE J. Sel. Topics Signal Process. 2(1), 4–17 (2008)

    Google Scholar 

  39. Thilina, K.M.; Choi, K.W.; Saquib, N.; Hossain, E.: Machine learning techniques for cooperative spectrum sensing in cognitive radio networks. IEEE J. Sel. Areas Commun. 31(11), 2209–2221 (2013)

    Google Scholar 

  40. Yin, W.; Ren, P.; Du, Q.; Wang, Y.: Delay and throughput oriented continuous spectrum sensing schemes in cognitive radio networks. IEEE Trans. Wireless Commun. 11(6), 2148–2159 (2012)

    Google Scholar 

  41. Sultan, A.: Sensing and transmit energy optimization for an energy harvesting cognitive radio. IEEE Wirel. Commun. Lett. 1(5), 500–503 (2012)

    Google Scholar 

  42. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Google Scholar 

  43. Coello, C.A.C.; Lamont, G.B.; Van Veldhuizen, D.A.; et al.: Evolutionary Algorithms for Solving Multi-objective Problems, vol. 5. Springer, New York (2007)

    MATH  Google Scholar 

  44. Cheng, R.; Rodemann, T.; Fischer, M.; Olhofer, M.; Jin, Y.: Evolutionary many-objective optimization of hybrid electric vehicle control: from general optimization to preference articulation. IEEE Trans. Emerg. Topics Comput. Intell. 1(2), 97–111 (2017)

    Google Scholar 

  45. Zaman, M.; Elsayed, S.M.; Ray, T.; Sarker, R.A.: Evolutionary algorithms for dynamic economic dispatch problems. IEEE Trans. Power Syst. 31(2), 1486–1495 (2016)

    Google Scholar 

  46. Zitzler, E.; Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Google Scholar 

  47. Srinivas, N.; Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Google Scholar 

  48. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: International Conference on Parallel Problem Solving from Nature, pp. 849–858. Springer, Betlin (2000)

  49. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.; Fast, A.: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Google Scholar 

  50. Coello, C.C.; Lechuga, M. S.: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol. 2. IEEE, pp. 1051–1056 (2002)

  51. Fonseca, C.M.; Fleming, P.J., et al.: Genetic algorithms for multiobjective optimization: Formulationdiscussion and generalization. In: ICGA, vol. 93, pp. 416–423, July. Citeseer, (1993)

  52. Knowles, J.D.; Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Google Scholar 

  53. Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho, LdS: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. Appl. 47, 106–119 (2016)

    Google Scholar 

  54. Vimal, S.; Khari, M.; Crespo, R.G.; Kalaivani, L.; Dey, N.; Kaliappan, M.: Energy enhancement using multiobjective ant colony optimisation with double Q learning algorithm for IoT based cognitive radio networks. Comput. Commun. 154, 481–490 (2020). https://doi.org/10.1016/j.comcom.2020.03.004

  55. Kaur, A.; Sharma, S.; Mishra, A.: Sensing period adaptation for multiobjective optimisation in cognitive radio using JAYA algorithm. Electron. Lett. 53(19), 1335–1336 (2017)

    Google Scholar 

  56. Coello, C.A., Pulido, G.T.: Multiobjective optimization using a micro-genetic algorithm. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, pp. 274–282 (2001)

  57. Haupt, R.L.; Ellen Haupt, S.: Practical genetic algorithms. Wiley, Hoboken, New Jersey (2004)

    MATH  Google Scholar 

  58. Tizhoosh, H.R.: Opposition-based learning: a new scheme for machine intelligence. In International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), vol. 1. IEEE, pp. 695–701 (2005)

  59. Gu, Q.; Li, X.; Jiang, S.: Hybrid genetic grey wolf algorithm for large-scale global optimization. Complexity. (2019). https://doi.org/10.1155/2019/2653512

  60. dos Santos Coelho, L.; Mariani, V.C.: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst. Appl. 34(3), 1905–1913 (2008)

    Google Scholar 

  61. Van Veldhuizen, D.A.; Lamont, G.B.: Multiobjective evolutionary algorithm research: a history and analysis. Technical Report Citeseer (1998)

  62. Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Google Scholar 

  63. Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Technical Report, Air Force INST of Tech Wright-Patterson AFB OH School of Engineering (1999)

  64. Huband, S.; Hingston, P.; Barone, L.; While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    MATH  Google Scholar 

  65. Garcia-Najera, A.; Bullinaria, J.A.: An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows. Comput. Oper. Res. 38(1), 287–300 (2011)

    MathSciNet  MATH  Google Scholar 

  66. Tan, K.C.; Chew, Y.H.; Lee, L.: A hybrid multiobjective evolutionary algorithm for solving vehicle routing problem with time windows. Comput. Optim. Appl. 34(1), 115 (2006)

    MathSciNet  MATH  Google Scholar 

  67. Castro-Gutierrez, J., Landa-Silva, D., Pérez, J.M.: Nature of real-world multi-objective vehicle routing with evolutionary algorithms. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics. IEEE, pp. 257–264 (2011)

  68. Abdullahi, H., Onumanyi, A., Zubair, S., Abu-Mahfouz, A.M., Hancke, G.P.: A cuckoo search optimization-based forward consecutive mean excision model for threshold adaptation in cognitive radio. Soft Comput. 1–22 (2019)

  69. Jothiraj, S.; Balu, S.: A novel linear SVM-based compressive collaborative spectrum sensing (CCSS) scheme for IoT cognitive 5G network. Soft. Comput. 23(18), 8515–8523 (2019)

    Google Scholar 

  70. Tripathi, P.K.; Bandyopadhyay, S.; Pal, S.K.: Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf. Sci. 177(22), 5033–5049 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CSIR (Council of Scientific and Industrial Research) for their support under SRF (Senior Research Fellowship) Program at VIT Vellore, India, and UK Commonwealth Fellowship for their support in the UK

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Shankar.

Ethics declarations

Conflict of interest

The first author, Mr. Geoffrey Eappen, declares that he has no conflict of interest. The second author, Dr. Shankar T., declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eappen, G., Shankar, T. Multi-Objective Modified Grey Wolf Optimization Algorithm for Efficient Spectrum Sensing in the Cognitive Radio Network. Arab J Sci Eng 46, 3115–3145 (2021). https://doi.org/10.1007/s13369-020-05084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05084-3

Keywords

Navigation