Skip to main content
Log in

Optimization of Design Parameters Affecting the Performance of a Magnetic Fluid Rotary Seal

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Three different design parameters of magnetic fluid seal are optimized for the maximum pressure differential capacity of the seal. The program finite element method magnetics (FEMM) based on finite element method is used to find the magnetic flux inside the gap for all the combinations of the design parameters. The data are analyzed using the MINITAB statistical analysis software. The multivariable regression analysis technique is used to find the percentage effect of different parameters and also the optimized dimensions. The effect of magnetic fluid volume on maximum pressure differential capacity of a seal is observed, and the optimized volume is found. The results provide enough data to design and fabricate the seal. This seal can be used in positive as well as negative pressure applications. For example, as vacuum rotary shaft seal in low-pressure chemical vapor deposition machines, pressure seal for stirrer shaft in chemical process chambers to seal toxic gases. This seal can also be used as an exclusion seal, such as a bearing protection seals in robotic arms used in manufacturing plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cowleyt, M.D.; Rosensweig, R.E.: The interfacial stability of a ferromagnetic fluid. Artic. J. Fluid Mech. 4, 671–688 (1968). https://doi.org/10.1017/S0022112067001697

    Article  Google Scholar 

  2. Rosensweig, R.E.: Fluid dynamics and science of magnetic liquids. Adv. Electron. Electron. Phys. 48, 103–199 (1979). https://doi.org/10.1016/S0065-2539(08)60306-6

    Article  Google Scholar 

  3. Vékás, L., Avdeev, M.V., Bica, D.: Magnetic Nanofluids: Synthesis and Structure. In: Shi, D. (ed.) NanoScience in Biomedicine. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-540-49661-8_25

    Chapter  Google Scholar 

  4. Parikh, N.P.; Parekh, K.H.: Defragmentation of lysozyme derived amyloid β fibril using biocompatible magnetic fluid. J. Mater. Sci. Mater. Med. (2018). https://doi.org/10.1007/s10856-018-6185-7

    Article  Google Scholar 

  5. Casula, M.F.; Floris, P.; Innocenti, C.; Lascialfari, A.; Marinone, M.; Corti, M.; Sperling, R.A.; Parak, W.J.; Sangregorio, C.: Magnetic resonance imaging contrast agents based on iron oxide superparamagnetic ferrofluids. Chem. Mater. 22, 1739–1748 (2010). https://doi.org/10.1021/cm9031557

    Article  Google Scholar 

  6. Liu, H.-D.; Xu, W.; Wang, S.-G.; Ke, Z.-J.: Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery. Appl. Math. Mech. Engl. Ed. 29, 1341–1349 (2008). https://doi.org/10.1007/s10483-008-1009-y

    Article  MathSciNet  MATH  Google Scholar 

  7. Patel, J.; Parekh, K.; Upadhyay, R.V.: Prevention of hot spot temperature in a distribution transformer using magnetic fluid as a coolant. Int. J. Therm. Sci. 103, 35–40 (2016). https://doi.org/10.1016/j.ijthermalsci.2015.12.012

    Article  Google Scholar 

  8. Martinez, L.; Cecelja, F.; Rakowski, R.: A novel magneto-optic ferrofluid material for sensor applications. Sens. Actuators A Phys. (2005). https://doi.org/10.1016/j.sna.2005.05.003

    Article  Google Scholar 

  9. Kaiser, R.; Miskolczy, G.: Some applications of ferrofluid magnetic colloids. IEEE Trans. Magn. 6, 694–698 (1970). https://doi.org/10.1109/TMAG.1970.1066834

    Article  Google Scholar 

  10. Raj, K.; Moskowitz, R.: Commercial applications of ferrofluids. J. Magn. Magn. Mater. 85, 233–245 (1990). https://doi.org/10.1016/0304-8853(90)90058-X

    Article  Google Scholar 

  11. Huang, C.; Yao, J.; Zhang, T.; Chen, Y.; Jiang, H.; Li, D.: Damping applications of ferrofluids: a review. J. Magn. 22, 109–121 (2017). https://doi.org/10.4283/JMAG.2017.22.1.109

    Article  Google Scholar 

  12. Odenbach, S.: Ferrofluids—magnetically controlled suspensions. Colloids Surf. A Physicochem. Eng. Asp. (2003). https://doi.org/10.1016/S0927-7757(02)00573-3

    Article  Google Scholar 

  13. Bailey, R.L.: Lesser known applications of ferrofluids. J. Magn. Magn. Mater. 39, 178–182 (1983). https://doi.org/10.1016/0304-8853(83)90428-6

    Article  Google Scholar 

  14. Parmar, S.; Ramani, V.; Upadhyay, R.V.; Parekh, K.: Design and development of large radial clearance static and dynamic magnetic fluid seal. Vacuum 156, 325–333 (2018). https://doi.org/10.1016/j.vacuum.2018.07.055

    Article  Google Scholar 

  15. Rosensweig, R.E.; Ferrofluidics Corp.: Magnetic Fluid Seals. U.S. Patent 3,620,584 (1971)

  16. Moskowitz, R.: Dynamic sealing with magnetic fluids. ASLE Trans. 18, 135–143 (1975). https://doi.org/10.1080/05698197508982756

    Article  Google Scholar 

  17. Perry, M.P.; Jones, T.B.: Hydrostatic loading of magnetic liquid seals. IEEE Trans. Magn. 12, 798–800 (1976). https://doi.org/10.1109/TMAG.1976.1059196

    Article  Google Scholar 

  18. Moore, H.: Verifying Ampere’s Law and Determining the Permeability of Free Space µ0. http://physics.wooster.edu/JrIS/Files/Moore_Web_article.pdf. Accessed 1 Mar 2020

  19. Raj, K.: Magnetic fluids and devices: a commercial survey. In: Berkovsky, B., Bashtovoi, V. (eds.) Magnetic Fluids and Applications Handbook. Begell House, New York (1996)

    Google Scholar 

  20. Raj, K.; Moskowitz, R.; Ferrofluidics Corp.: Compact Long-Life Magnetic Fluid Seal. U.S. Patent 4,830,384 (1989)

  21. Krakov, M.S.; Nikiforov, I.V.: Regarding the influence of heating and the Soret effect on a magnetic fluid seal. J. Magn. Magn. Mater. 431, 255–261 (2017). https://doi.org/10.1016/j.jmmm.2016.07.054

    Article  Google Scholar 

  22. Raj, K.; Ferrofluidics Corp.: Ferrofluid Rotary-Shaft Seal Apparatus and Method. U.S. Patent 4,357,024 (1982)

  23. Müller, H.K., Nau, B.S.: Fluid Sealing Technology Principles and Applications. Marcel Dekker, New York (1998)

    Google Scholar 

  24. Meyer, R.K.; Krueger, D.D.: A Minitab Guide to Statistics. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  25. www.minitab.com. Accessed 1 Mar 2020

  26. www.femm.info. Accessed 1 Mar 2020

Download references

Acknowledgements

The authors would like to acknowledge Charotar University of Science and Technology-CHARUSAT for providing the MINITAB software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Parmar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmar, S., Upadhyay, R.V. & Parekh, K. Optimization of Design Parameters Affecting the Performance of a Magnetic Fluid Rotary Seal. Arab J Sci Eng 46, 2343–2348 (2021). https://doi.org/10.1007/s13369-020-05094-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05094-1

Keywords

Navigation