Skip to main content
Log in

Load Distribution at the Patellofemoral Joint During Walking

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We combined computational modelling with experimental gait data to describe and explain load distribution across the medial and lateral facets of the patella during normal walking. The body was modelled as a 13-segment, 32-degree-of-freedom (DOF) skeleton actuated by 80 muscles. The knee was represented as a 3-body, 12-DOF mechanical system with deformable articular cartilage surfaces at the tibiofemoral (TF) and patellofemoral (PF) joints. Passive responses of the knee model to 100 N anterior-posterior drawer and 5 Nm axial torque tests were consistent with cadaver data reported in the literature. Trajectories of 6-DOF TF and PF joint motion and articular joint contact calculated for walking were also consistent with measurements obtained from biplane X-ray imaging. The force acting on the lateral patellar facet was considerably higher than that on the medial facet throughout the gait cycle. The vastus medialis, vastus lateralis and patellar tendon forces contributed substantially to the first peak in the PF contact force during stance whereas all three portions of the vasti and rectus femoris were responsible for the second peak during swing. A higher lateral patellar contact force was caused mainly by the laterally-directed shear force applied by the quadriceps muscles, especially the vastus lateralis, intermedius and rectus femoris. A better understanding of the contributions of the individual knee muscles to load distribution in the PF compartment may lead to improved surgical and physiotherapy methods to treat PF disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ahmed, A., D. Burke, and A. Yu. In-vitro measurement of static pressure distribution in synovial joints—part II: retropatellar surface. J. Biomech. Eng. 105:226–236, 1983.

    Article  CAS  PubMed  Google Scholar 

  2. Akbarshahi, M., J. W. Fernandez, A. G. Schache, and M. G. Pandy. Subject-specific evaluation of patellofemoral joint biomechanics during functional activity. Med. Eng. Phys. 36:1122–1133, 2014.

    Article  PubMed  Google Scholar 

  3. Amis, A., P. Firer, J. Mountney, W. Senavongse, and N. Thomas. Anatomy and biomechanics of the medial patellofemoral ligament. Knee 10:215–220, 2003.

    Article  CAS  PubMed  Google Scholar 

  4. Argatov, I. Mathematical modeling of linear viscoelastic impact: application to drop impact testing of articular cartilage. Tribol. Int. 63:213–225, 2013.

    Article  Google Scholar 

  5. Baldwin, J. L., and C. K. House. Anatomic dimensions of the patella measured during total knee arthroplasty. J. Arthroplast. 20:250–257, 2005.

    Article  Google Scholar 

  6. Carter, D. R., G. S. Beaupre, M. Wong, R. L. Smith, T. P. Andriacchi, and D. J. Schurman. The mechanobiology of articular cartilage development and degeneration. Clin. Orthop. Relat. Res. 427:69–77, 2004.

    Article  Google Scholar 

  7. Chen, Y.-J., I. Scher, and C. M. Powers. Quantification of patellofemoral joint reaction forces during functional activities using a subject-specific three-dimensional model. J. Appl. Biomech. 26:415–423, 2010.

    Article  CAS  PubMed  Google Scholar 

  8. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  9. Dorn, T. W., A. G. Schache, and M. G. Pandy. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. J. Exp. Biol. 215:1944–1956, 2012.

    Article  PubMed  Google Scholar 

  10. Elahi, S., S. Cahue, D. T. Felson, L. Engelman, and L. Sharma. The association between varus–valgus alignment and patellofemoral osteoarthritis. Arthr. Rheum.: Off. J. Am. Coll. Rheumatol. 43:1874–1880, 2000.

    Article  CAS  Google Scholar 

  11. Elias, J. J., M. S. Kirkpatrick, A. Saranathan, S. Mani, L. G. Smith, and M. J. Tanaka. Hamstrings loading contributes to lateral patellofemoral malalignment and elevated cartilage pressures: an in vitro study. Clin. Biomech. 26:841–846, 2011.

    Article  Google Scholar 

  12. Elias, J. J., D. R. Wilson, R. Adamson, and A. J. Cosgarea. Evaluation of a computational model used to predict the patellofemoral contact pressure distribution. J. Biomech. 37:295–302, 2004.

    Article  PubMed  Google Scholar 

  13. Fregly, B. J., T. F. Besier, D. G. Lloyd, S. L. Delp, S. A. Banks, M. G. Pandy, and D. D. D’Lima. Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 30:503–513, 2012.

    Article  PubMed  Google Scholar 

  14. Gollehon, D. L., P. Torzilli, and R. Warren. The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study. J. Bone Joint Surg. Am. Vol. 69:233–242, 1987.

    Article  CAS  Google Scholar 

  15. Goudakos, I. G., C. Konig, P. B. Schottle, W. R. Taylor, N. B. Singh, I. Roberts, F. Streitparth, G. N. Duda, and M. O. Heller. Stair climbing results in more challenging patellofemoral contact mechanics and kinematics than walking at early knee flexion under physiological-like quadriceps loading. J. Biomech. 42:2590–2596, 2009.

    Article  PubMed  Google Scholar 

  16. Gray, H. A., S. Guan, L. T. Thomeer, A. G. Schache, R. de Steiger, and M. G. Pandy. Three-dimensional motion of the knee-joint complex during normal walking revealed by mobile biplane x-ray imaging. J. Orthop. Res. 37:615–630, 2019.

    Article  PubMed  Google Scholar 

  17. Gu, W., and M. G. Pandy. Direct validation of human knee-joint contact mechanics derived from subject-specific finite-element models of the tibiofemoral and patellofemoral joints. J. Biomech. Eng. 142:071001, 2020.

    Article  Google Scholar 

  18. Halonen, K. S., M. E. Mononen, J. S. Jurvelin, J. Toyras, A. Klodowski, J. P. Kulmala, and R. K. Korhonen. Importance of patella, quadriceps forces, and depthwise cartilage structure on knee joint motion and cartilage response during gait. J. Biomech. Eng. 138:071002, 2016.

    Article  Google Scholar 

  19. Hashemi, J., N. Chandrashekar, B. Gill, B. D. Beynnon, J. R. Slauterbeck, R. C. Schutt, Jr, H. Mansouri, and E. Dabezies. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J. Bone Joint Surg. Am. Vol. 90:2724, 2008.

    Article  Google Scholar 

  20. Hirokawa, S. Three-dimensional mathematical model analysis of the patellofemoral joint. J. Biomech. 24:659–671, 1991.

    Article  CAS  PubMed  Google Scholar 

  21. Hu, J., Z. Chen, H. Xin, Q. Zhang, and Z. Jin. Musculoskeletal multibody dynamics simulation of the contact mechanics and kinematics of a natural knee joint during a walking cycle. Proc. Inst. Mech. Eng. Part H 232:508–519, 2018.

    Article  Google Scholar 

  22. Huberti, H., and W. Hayes. Patellofemoral contact pressures. The influence of Q-angle and tendofemoral contact. J. Bone Joint Surg. Am. Vol. 66:715–724, 1984.

    Article  CAS  Google Scholar 

  23. Hungerford, D. S., and M. Barry. Biomechanics of the patellofemoral joint. Clin. Orthop. Relat. Res. 144:9–15, 1979.

    Google Scholar 

  24. Kobayashi, K., A. Hosseini, M. Sakamoto, W. Qi, H. E. Rubash, and G. Li. In vivo kinematics of the extensor mechanism of the knee during deep flexion. J. Biomech. Eng. 135:081002, 2013.

    Article  Google Scholar 

  25. Lenhart, R. L., J. Kaiser, C. R. Smith, and D. G. Thelen. Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement. Ann. Biomed. Eng. 43:2675–2685, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lenhart, R. L., C. R. Smith, M. F. Vignos, J. Kaiser, B. C. Heiderscheit, and D. G. Thelen. Influence of step rate and quadriceps load distribution on patellofemoral cartilage contact pressures during running. J. Biomech. 48:2871–2878, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li, G., L. E. DeFrate, S. Zayontz, S. E. Park, and T. J. Gill. The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads. J. Orthop. Res. 22:801–806, 2004.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, Y. C., J. P. Walter, S. A. Banks, M. G. Pandy, and B. J. Fregly. Simultaneous prediction of muscle and contact forces in the knee during gait. J. Biomech. 43:945–952, 2010.

    Article  PubMed  Google Scholar 

  29. Lin, Y. C., J. P. Walter, and M. G. Pandy. Predictive simulations of neuromuscular coordination and joint-contact loading in human gait. Ann. Biomed. Eng. 46:1216–1227, 2018.

    Article  PubMed  Google Scholar 

  30. Liu, F., M. Kozanek, A. Hosseini, S. K. Van de Velde, T. J. Gill, H. E. Rubash, and G. Li. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J. Biomech. 43:658–665, 2010.

    Article  PubMed  Google Scholar 

  31. Mason, J. J., F. Leszko, T. Johnson, and R. D. Komistek. Patellofemoral joint forces. J. Biomech. 41:2337–2348, 2008.

    Article  CAS  PubMed  Google Scholar 

  32. Millard, M., T. Uchida, A. Seth, and S. L. Delp. Flexing computational muscle: modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 135:021005, 2013.

    Article  PubMed  Google Scholar 

  33. Pieper S., B. Lorensen, W. Schroeder, and R. Kikinis. The NA-MIC kit: LTK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community. Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium, pp. 698–701, 2006.

  34. Ramappa, A. J., M. Apreleva, F. R. Harrold, P. G. Fitzgibbons, D. R. Wilson, and T. J. Gill. The effects of medialization and anteromedialization of the tibial tubercle on patellofemoral mechanics and kinematics. Am. J. Sports Med. 34:749–756, 2006.

    Article  PubMed  Google Scholar 

  35. Rothermich, M. A., N. R. Glaviano, J. Li, and J. M. Hart. Patellofemoral pain: Epidemiology, pathophysiology, and treatment options. Clin. Sports Med. 34:313–327, 2015.

    Article  PubMed  Google Scholar 

  36. Shelburne, K. B., M. G. Pandy, F. C. Anderson, and M. R. Torry. Pattern of anterior cruciate ligament force in normal walking. J. Biomech. 37:797–805, 2004.

    Article  PubMed  Google Scholar 

  37. Shelburne, K. B., M. R. Torry, and M. G. Pandy. Muscle, ligament, and joint-contact forces at the knee during walking. Med. Sci. Sports Exerc. 37:1948–1956, 2005.

    Article  PubMed  Google Scholar 

  38. Smith, T. O., N. J. Hunt, and S. T. Donell. The reliability and validity of the Q-angle: a systematic review. Knee Surg. Sports Traumatol. Arthrosc. 16:1068–1079, 2008.

    Article  PubMed  Google Scholar 

  39. Sritharan, P., Y. C. Lin, and M. G. Pandy. Muscles that do not cross the knee contribute to the knee adduction moment and tibiofemoral compartment loading during gait. J. Orthop. Res. 30:1586–1595, 2012.

    Article  PubMed  Google Scholar 

  40. Tecklenburg, K., D. Dejour, C. Hoser, and C. Fink. Bony and cartilaginous anatomy of the patellofemoral joint. Knee Surg. Sports Traumatol. Arthrosc. 14:235–240, 2006.

    Article  CAS  PubMed  Google Scholar 

  41. Thelen, D. G., F. C. Anderson, and S. L. Delp. Generating dynamic simulations of movement using computed muscle control. J. Biomech. 36:321–328, 2003.

    Article  PubMed  Google Scholar 

  42. Thomeer, L. T., F. T. Sheehan, and J. N. Jackson. Normalized patellofemoral joint reaction force is greater in individuals with patellofemoral pain. J. Biomech. 60:238–242, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Umberger, B. R. Effects of suppressing arm swing on kinematics, kinetics, and energetics of human walking. J. Biomech. 41:2575–2580, 2008.

    Article  PubMed  Google Scholar 

  44. Van Kampen, A., and R. Huiskes. The three-dimensional tracking pattern of the human patella. J. Orthop. Res. 8:372–382, 1990.

    Article  PubMed  Google Scholar 

  45. Waligora, A. C., N. A. Johanson, and B. E. Hirsch. Clinical anatomy of the quadriceps femoris and extensor apparatus of the knee. Clin. Orthop. Relat. Res. 467:3297–3306, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.

    CAS  PubMed  Google Scholar 

  47. Zavatsky, A. B., P. T. Oppold, and A. J. Price. Simultaneous in vitro measurement of patellofemoral kinematics and forces. J. Biomech. Eng. 126:351–356, 2004.

    Article  PubMed  Google Scholar 

  48. Zhao, D., S. A. Banks, K. H. Mitchell, D. D. D’Lima, C. W. Colwell, Jr, and B. J. Fregly. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J. Orthop. Res. 25:789–797, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded in part by the Australian Research Council (ARC) Discovery Projects Grant Scheme (DP120101973). LTT was also supported by a Postgraduate Scholarship provided by the University of Melbourne.

Author information

Authors and Affiliations

Authors

Contributions

LTT, YL, and MGP designed the study. MGP obtained funding for the research. LTT performed the data collection and analysis. LTT, YL, and MGP interpreted the data and drafted the manuscript. MGP was the chief investigator for the study.

Corresponding author

Correspondence to Lucas T. Thomeer.

Additional information

Associate Editor Michael Torry oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomeer, L.T., Lin, YC. & Pandy, M.G. Load Distribution at the Patellofemoral Joint During Walking. Ann Biomed Eng 48, 2821–2835 (2020). https://doi.org/10.1007/s10439-020-02672-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02672-0

Keywords

Navigation