Skip to main content

Advertisement

Log in

A Computationally-Efficient, Online-Learning Algorithm for Detecting High-Voltage Spindles in the Parkinsonian Rats

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Abnormally-synchronized, high-voltage spindles (HVSs) are associated with motor deficits in 6-hydroxydopamine-lesioned parkinsonian rats. The non-stationary, spike-and-wave HVSs (5-13 Hz) represent the cardinal parkinsonian state in the local field potentials (LFPs). Although deep brain stimulation (DBS) is an effective treatment for the Parkinson’s disease, continuous stimulation results in cognitive and neuropsychiatric side effects. Therefore, an adaptive stimulator able to stimulate the brain only upon the occurrence of HVSs is demanded. This paper proposes an algorithm not only able to detect the HVSs with low latency but also friendly for hardware realization of an adaptive stimulator. The algorithm is based on autoregressive modeling at interval, whose parameters are learnt online by an adaptive Kalman filter. In the LFPs containing 1131 HVS episodes from different brain regions of four parkinsonian rats, the algorithm detects all HVSs with 100% sensitivity. The algorithm also achieves higher precision (96%) and lower latency (61 ms), while requiring less computation time than the continuous wavelet transform method. As the latency is much shorter than the mean duration of an HVS episode (4.3 s), the proposed algorithm is suitable for realization of a smart neuromodulator for mitigating HVSs effectively by closed-loop DBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

AKF:

Adaptive Kalman filter

AR:

Autoregressive model

cDBS:

Closed-loop deep brain stimulation

CWT:

Continuous wavelet transform

DBS:

Deep brain stimulation

FN:

False negative

FP:

False positive

FPGA:

Field-programmable gate array

HHT:

Hilbert-Huang transform

HVS:

High-voltage spindle

LFP:

Local field potential

ML:

Machine-learning

PACF:

Partial autocorrelation function

PD:

Parkinson’s disease

PSD:

Power spectral density

SNR:

Signal-to-noise ratio

TP:

True positive

TR:

Detection threshold

6-OHDA:

6-Hydroxydopamine

References

  1. Beudel, M., and P. Brown. Adaptive deep brain stimulation in Parkinson’s disease. Parkinsonism Relat. Disord. 22:S123–S126, 2016.

    Article  Google Scholar 

  2. Bowerman, B. L., and R. T. O’Connell. Forecasting and Time Series: An Applied Approach. Belmont, CA: Duxbury Press, 1993.

    Google Scholar 

  3. Broersen, P. M. T., and S. de Waele. Time series analysis in a frequency subband. IEEE Trans. Instrum. Meas. 52(4):1054–1060, 2003.

    Article  Google Scholar 

  4. Buonamici, M., R. Maj, F. Pagani, A. C. Rossi, and N. Khazan. Tremor at rest episodes in unilaterally 6-OHDA-induced substantia-nigra lesioned rats: EEG-EMG and behavior. Neuropharmacology 25(3):323–325, 1986.

    Article  CAS  Google Scholar 

  5. Buzsaki, G., A. Smith, S. Berger, L. J. Fisher, and F. H. Gage. Petit mal epilepsy and Parkinsonian tremor: hypothesis of a common pacemaker. Neuroscience 36(1):1–14, 1990.

    Article  CAS  Google Scholar 

  6. Camara, C., P. Isasi, K. Warwick, V. Ruiz, T. Aziz, J. Stein, and E. Bakstein. Resting tremor classification and detection in Parkinson’s disease patients. Biomed. Signal Process. Control 16:88–97, 2015.

    Article  Google Scholar 

  7. Carron, R., A. Chaillet, A. Filipchuk, W. Pasillas-Lépine, and C. Hammond. Closing the loop of deep brain stimulation. Front. Syst. Neurosci. 7(112):1–18, 2013.

    Google Scholar 

  8. Chen, Y. C., C. C. Chang, R. Perumal, S. R. Yeh, Y. C. Chang, and H. Chen. Optimization and implementation of wavelet-based algorithms for detecting high-voltage spindles in neuron signals. ACM Trans. Embed. Comput. Syst. 18(5):1–16, 2019.

    Article  Google Scholar 

  9. Chen, Y. C., R. Perumal, C. H. Hwang, and H. Chen. Hardware-based simplified discrete wavelet transform for detecting high-voltage spindles in neuron signals. 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Turin, Italy, 2017.

  10. Daniely. A., N. Linial, and S. Shalev-Shwartz. From average case complexity to improper learning complexity. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, New York, USA, pp. 441–448, 2014.

  11. De Waele, S., and P. M. T. Broersen. Multirate autoregressive modeling. In: Selected Topics in Signals, Systems and Control, edited by O. H. Bosgra, P. M. J. Van Den Hof, and C. W. Scherer. Amsterdam: IOS Press, 2001, pp. 75–80.

    Google Scholar 

  12. Dejean, C., C. E. Gross, B. Bioulac, and T. Boraud. Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat. J. Neurophysiol. 100:385–396, 2008.

    Article  Google Scholar 

  13. Ge, S., C. Yang, M. Li, J. Li, X. Chang, J. Fu, L. Chen, C. Chang, X. Wang, J. Zhu, and G. Gao. Dopamine depletion increases the power and coherence of high-voltage spindles in the globus pallidus and motor cortex of freely moving rats. Brain Res. 1465:66–79, 2012.

    Article  CAS  Google Scholar 

  14. Gilmour, T. P., and T. Subramanian. Multiscale autoregressive identification of neuro-electrophysiological systems. 33rd Annual International Conference of the IEEE EMBS. Boston, USA, 2011.

  15. Hebb, A. O., J. J. Zhang, M. H. Mahoor, C. Tsiokos, C. Matlack, H. J. Chizeck, and N. Pouratian. Creating the feedback loop: closed-loop neurostimulation. Neurosurg. Clin. N. Am. 25(1):187–204, 2014.

    Article  Google Scholar 

  16. Huberdeau, D., H. Walker, H. Huang, E. Montgomery, and S. V. Sarma. Analysis of local field potential signals: a systems approach. 33rd Annual International Conference of the IEEE EMBS. Boston, USA, 2011.

  17. Lazic, K., J. Ciric, and J. Saponjic. Sleep spindle dynamics during NREM and REM sleep following distinct general anaesthesia in control rats and in a rat model of Parkinson’s disease cholinopathy. J. Sleep Res. 28(1):e12758, 2019.

    Article  Google Scholar 

  18. Li, H., S. Kwong, L. Yang, D. Huang, and D. Xiao. Hilbert-Huang transform for analysis of heart rate variability in cardiac health. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(6):1557–1567, 2011.

    Article  Google Scholar 

  19. Little, S., A. Pogosyan, S. Neal, B. Zavala, L. Zrinzo, M. Hariz, T. Foltynie, P. Limousin, K. Ashkan, J. FitzGerald, A. L. Green, T. Z. Aziz, and P. Brown. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 74(3):449–457, 2013.

    Article  Google Scholar 

  20. Nguyen, D. P., M. A. Wilson, E. N. Brown, and R. Barbieri. Measuring instantaneous frequency of local field potential oscillations using the Kalman smoother. J. Neurosci. Methods 184(2):365–374, 2009.

    Article  Google Scholar 

  21. Parastarfeizabadi, M., and A. Z. Kouzani. Advances in closed-loop deep brain stimulation devices. J. Neuroeng. Rehabil. 14(1), 2017.

  22. Perumal, R., and H. Chen. Performance analysis in a wavelet-based algorithm for automatic detection of high-voltage spindles in Parkinson’s disease rat models. In: IFMBE Proceedings. 1st Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering, Cham:Springer, pp. 170–173, 2015.

  23. Priori, A., G. Foffani, L. Rossi, and S. Marceglia. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp. Neurol. 245:77–86, 2013.

    Article  Google Scholar 

  24. Quinn, E. J., Z. Blumenfeld, A. Velisar, M. M. Koop, L. A. Shreve, M. H. Trager, B. C. Hill, C. Kilbane, J. M. Henderson, and H. Bronte-Stewart. Beta oscillations in freely moving Parkinson’s subjects are attenuated during deep brain stimulation. Mov. Disord. 30(13):1750–1758, 2015.

    Article  Google Scholar 

  25. Radek, R. J., P. Curzon, and M. W. Decker. Characterization of high voltage spindles and spatial memory in young, mature and aged rats. Brain Res. Bull. 33(2):183–188, 1994.

    Article  CAS  Google Scholar 

  26. Rosa, M., M. Arlotti, G. Ardolino, F. Cogiamanian, S. Marceglia, A. D. Fonzo, F. Cortese, P. M. Rampini, and A. Priori. Adaptive deep brain stimulation in a freely moving Parkinsonian patient. Mov. Disord. 30(7):1003–1005, 2015.

    Article  Google Scholar 

  27. Ross, S. E., Z. Ouyang, S. Rajagopalan, and T. M. Bruns. Evaluation of decoding algorithms for estimating bladder pressure from dorsal root ganglia neural recordings. Ann. Biomed. Eng. 46(2):233–246, 2018.

    Article  Google Scholar 

  28. Schlögl, A. The Electroencephalogram and the Adaptive Autoregressive Model: Theory and Applications. Aachen: Shaker-Verlag, 2000.

    Google Scholar 

  29. Tatinati, S., K. C. Veluvolu, S. Hong, W. T. Latt, and W. T. Ang. Physiological tremor estimation with autoregressive (AR) model and Kalman filter for robotics applications. IEEE Sensors J. 13(12):4977–4985, 2013.

    Article  Google Scholar 

  30. Uhlhaas, P. J., and W. Singer. Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11(2):100–113, 2010.

    Article  CAS  Google Scholar 

  31. Yang, C., J. R. Zhang, L. Chen, S. N. Ge, J. L. Wang, Z. Q. Yan, D. Jia, J. L. Zhu, and G. D. Gao. High frequency stimulation of the STN restored the abnormal high-voltage spindles in the cortex and the globus pallidus of 6-OHDA lesioned rats. Neurosci. Lett. 595:122–127, 2015.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the National Health Research Institute [Grant No. NHRI-EX105-10430NI] and the Ministry of Science and Technology [Grant No. MOST 106-2622-8-007-014 -TA] in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin Chen.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Notations

In the following, ‘a.u.’ represents arbitrary unit. Vectors and matrices are designated with bold lowercase (\(\varvec{x}\)) and uppercase (\(\varvec{X}\)) letters, respectively. The elements of a matrix \(\varvec{M} = \left\{ {m_{ij} } \right\}\) are indexed by the row index \(i\) and column index\(j\). T denotes the transpose operator. Unbolded lowercase letters refer to values or individual elements in a vector whose position in the vector is indicated by the subscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 kb)

Supplementary material 2 (PDF 1206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perumal, R., Vigneron, V., Chuang, CF. et al. A Computationally-Efficient, Online-Learning Algorithm for Detecting High-Voltage Spindles in the Parkinsonian Rats. Ann Biomed Eng 48, 2809–2820 (2020). https://doi.org/10.1007/s10439-020-02680-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02680-0

Keywords

Navigation