skip to main content
research-article

Faceted Search with Object Ranking and Answer Size Constraints

Authors Info & Claims
Published:16 November 2020Publication History
Skip Abstract Section

Abstract

Faceted Search is a widely used interaction scheme in digital libraries, e-commerce, and recently also in Linked Data. Surprisingly, object ranking in the context of Faceted Search is not well studied in the literature. In this article, we propose an extension of the model with two parameters that enable specifying the desired answer size and the granularity of the sought object ranking. These parameters allow tackling the problem of too big or too small answers and can specify how refined the sought ranking should be. Then, we provide an algorithm that takes as input these parameters and by considering the hard-constraints (filters), the soft-constraints (preferences), as well as the statistical properties of the dataset (through various frequency-based ranking schemes), produces an object ranking that satisfies these parameters, in a transparent way for the user. Then, we present extensive simulation-based evaluation results that provide evidence that the proposed model also improves the answers and reduces the user’s cost. Finally, we propose GUI extensions that are required and present an implementation of the model.

References

  1. Adnan Abid, Naveed Hussain, Kamran Abid, Farooq Ahmad, Muhammad Shoaib Farooq, Uzma Farooq, Sher Afzal Khan, Yaser Daanial Khan, Muhammad Azhar Naeem, and Nabeel Sabir. 2016. A survey on search results diversification techniques. Neural Comput. Appl. 27, 5 (July 2016), 1207–1229. DOI:https://doi.org/10.1007/s00521-015-1945-5Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. anjay Agrawal, Surajit Chaudhuri, Gautam Das, and Aristides Gionis. 2003. Automated ranking of database query results. In Proceedings of the Conference on Innovative Data Systems Research 2003, First Biennial Conference on Innovative Data Systems Research. Retrieved from http://www-db.cs.wisc.edu/cidr/cidr2003/program/p9.pdf.Google ScholarGoogle Scholar
  3. Senjuti Basu Roy, Haidong Wang, Gautam Das, Ullas Nambiar, and Mukesh Mohania. 2008. Minimum-effort driven dynamic faceted search in structured databases. In Proceedings of the 17th ACM Conference on Information and Knowledge Management. ACM, 13--22.Google ScholarGoogle Scholar
  4. Yang Cao and Wenfei Fan. 2017. Data driven approximation with bounded resources. Proc. VLDB Endow. 10, 9 (2017), 973--984.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard Weikum. 2004. Probabilistic ranking of database query results. In Proceedings of the 30th International Conference on Very Large Data Bases—Volume 30. VLDB Endowment, 888--899.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. William S. Cooper. 1968. Expected search length: A single measure of retrieval effectiveness based on the weak ordering action of retrieval systems. Amer. Document. 19, 1 (1968), 30--41.Google ScholarGoogle ScholarCross RefCross Ref
  7. Wisam Dakka, Panagiotis G. Ipeirotis, and Kenneth R. Wood. 2005a. Automatic construction of multifaceted browsing interfaces. In Proceedings of the 14th ACM International Conference on Information and Knowledge Management (CIKM’05). ACM, New York, NY, 768--775. DOI:https://doi.org/10.1145/1099554.1099738Google ScholarGoogle Scholar
  8. Wisam Dakka, Panagiotis G. Ipeirotis, and Kenneth R. Wood. 2005b. Automatic construction of multifaceted browsing interfaces. In Proceedings of the 14th ACM International Conference on Information and Knowledge Management. 768--775.Google ScholarGoogle Scholar
  9. Wisam Dakka, Panagiotis G. Ipeirotis, and Kenneth R. Wood. 2007. Faceted browsing over large databases of text-annotated objects. In Proceedings of the IEEE 23rd International Conference on Data Engineering. IEEE, 1489--1490.Google ScholarGoogle Scholar
  10. Marina Drosou and Evaggelia Pitoura. 2010. Search result diversification. SIGMOD Rec. 39, 1 (2010), 41--47.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jennifer English, Marti Hearst, Rashmi Sinha, Kirsten Swearingen, and Ka-Ping Yee. 2002. Hierarchical faceted metadata in site search interfaces. In Proceedings of the Extended Abstracts on Human Factors in Computing Systems (CHI’02). 628--639.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Pavlos Fafalios and Yannis Tzitzikas. 2013. X-ENS: Semantic enrichment of web search results at real-time. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. 1089--1090.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Leila Feddoul, Sirko Schindler, and Frank Löffler. 2019. Automatic facet generation and selection over knowledge graphs. In Proceedings of the International Conference on Semantic Systems. Springer, 310--325.Google ScholarGoogle ScholarCross RefCross Ref
  14. Sébastien Ferré. 2014a. Reconciling Expressivity and Usability in Information Access: From File Systems to the Semantic Web. Computer Science [cs]. University de Rennes 1 (2014).Google ScholarGoogle Scholar
  15. Sébastien Ferré. 2014b. Sparklis: A SPARQL endpoint explorer for expressive question answering. In Proceedings of the International Semantic Web Conference (ISWC’14). Retrieved from https://hal.inria.fr/hal-01100319.Google ScholarGoogle Scholar
  16. Rasmus Hahn, Christian Bizer, Christopher Sahnwaldt, Christian Herta, Scott Robinson, Michaela Bürgle, Holger Düwiger, and Ulrich Scheel. 2010. Faceted wikipedia search. In Business Information Systems, Witold Abramowicz and Robert Tolksdorf (Eds.). Springer, Berlin, 1--11.Google ScholarGoogle Scholar
  17. Andreas Harth. 2009. VisiNav: Visual web data search and navigation. In Database and Expert Systems Applications, Sourav S. Bhowmick, Josef Küng, and Roland Wagner (Eds.). Springer, Berlin, 214--228.Google ScholarGoogle Scholar
  18. Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, Krisztian Balog, Svein Erik Bratsberg, Alexander Kotov, and Jamie Callan. 2017. DBpedia-entity v2: A test collection for entity search. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 1265--1268.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Marti Hearst. 2006. Design recommendations for hierarchical faceted search interfaces. In Proceedings of the ACM SIGIR Workshop on Faceted Search. 1--5.Google ScholarGoogle Scholar
  20. Frank Hopfgartner, Thierry Urruty, Pablo Bermejo Lopez, Robert Villa, and Joemon M. Jose. 2010. Simulated evaluation of faceted browsing based on feature selection. Multimedia Tools Appl. 47, 3 (May 2010), 631--662. DOI:https://doi.org/10.1007/s11042-009-0340-6Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. 2008. A survey of Top-k query processing techniques in relational database systems. ACM Comput. Surv. 40, 4, Article 11 (Oct. 2008), 58 pages. DOI:https://doi.org/10.1145/1391729.1391730Google ScholarGoogle Scholar
  22. Giorgos Kadilierakis, Pavlos Fafalios, Panagiotis Papadakos, and Yannis Tzitzikas. 2020. Keyword search over RDF using document-centric information retrieval systems. In Proceedings of the European Semantic Web Conference. Springer, 121--137.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ioannis Kitsos, Kostas Magoutis, and Yannis Tzitzikas. 2014. Scalable entity-based summarization of web search results using MapReduce. Distrib. Parallel Data. 32, 3 (2014), 405--446.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Yuta Kobayashi, Hiroyuki Shindo, and Yuji Matsumoto. 2019. Scientific article search system based on discourse facet representation. Proceedings of the AAAI Conference on Artificial Intelligence. 9859--9860. DOI:https://doi.org/10.1609/aaai.v33i01.33019859Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Weize Kong and James Allan. 2014. Extending faceted search to the general web. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management (CIKM’14). Association for Computing Machinery, New York, NY, 839--848. DOI:https://doi.org/10.1145/2661829.2661964Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Jonathan Koren, Yi Zhang, and Xue Liu. 2008. Personalized interactive faceted search. In Proceedings of the 17th International Conference on World Wide Web (WWW’08). ACM, New York, NY, 477--486. DOI:https://doi.org/10.1145/1367497.1367562Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Chengkai Li, Ning Yan, Senjuti B. Roy, Lekhendro Lisham, and Gautam Das. 2010. Facetedpedia: Dynamic generation of query-dependent faceted interfaces for wikipedia. In Proceedings of the 19th International Conference on World Wide Web (WWW ’10). ACM, New York, NY, 651--660. DOI:https://doi.org/10.1145/1772690.1772757Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Panagiotis Lionakis and Yannis Tzitzikas. 2017. Pfsgeo: Preference-enriched faceted search for geographical data. In Proceedings of the OTM Confederated International Conferences on the Move to Meaningful Internet Systems. Springer, 125--143.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tie-Yan Liu. 2009. Learning to rank for information retrieval. Found. Trends Info. Retriev. 3, 3 (2009), 225--331. DOI:https://doi.org/10.1561/1500000016Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Kostas Manioudakis and Yannis Tzitzikas. 2019. Extending faceted search with automated object ranking. In Metadata and Semantic Research, Emmanouel Garoufallou, Francesca Fallucchi, and Ernesto William De Luca (Eds.). Springer International Publishing, Cham, 223--235.Google ScholarGoogle Scholar
  31. Amélie Marian, Nicolas Bruno, and Luis Gravano. 2004. Evaluating top-k queries over web-accessible databases. ACM Trans. Database Syst. 29, 2 (2004), 319--362.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. José Moreno-Vega and Aidan Hogan. 2018. GraFa: Scalable faceted browsing for RDF graphs. In Proceedings of the International Semantic Web Conference. Springer, 301--317.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Xi Niu, Xiangyu Fan, and Tao Zhang. 2019. Understanding faceted search from data science and human factor perspectives. ACM Trans. Info. Syst. 37, 2, Article 14 (Jan. 2019), 27 pages. DOI:https://doi.org/10.1145/3284101Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Alexandros Ntoulas and Junghoo Cho. 2007. Pruning policies for two-tiered inverted index with correctness guarantee. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 191--198.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Eyal Oren, Renaud Delbru, and Stefan Decker. 2006. Extending faceted navigation for RDF data. In Proceedings of the International Semantic Web Conference (ISWC’06), Isabel Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter Mika, Mike Uschold, and Lora M. Aroyo (Eds.). Springer, Berlin, 559--572.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Panagiotis Papadakos, Nikos Armenatzoglou, Stella Kopidaki, and Yannis Tzitzikas. 2012. On exploiting static and dynamically mined metadata for exploratory web searching. Knowl. Info. Syst. 30, 3 (2012), 493--525.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Panagiotis Papadakos and Yannis Tzitzikas. 2014. Hippalus: Preference-enriched faceted exploration. In Proceedings of the EDBT/ICDT Workshops, Vol. 172.Google ScholarGoogle Scholar
  38. Alexandros Papangelis, Panagiotis Papadakos, Yannis Stylianou, and Yannis Tzitzikas. 2018. Spoken dialogue for information navigation. In Proceedings of the Special Interest Group on Discourse and Dialogue.Google ScholarGoogle ScholarCross RefCross Ref
  39. Olivier Pivert, Olfa Slama, and Virginie Thion. 2016. SPARQL extensions with preferences: A survey. In Proceedings of the ACM Symposium on Applied Computing. DOI:https://doi.org/10.1145/2851613.2851690Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Jeffrey Pound, Peter Mika, and Hugo Zaragoza. 2010. Ad-hoc object retrieval in the web of data. In Proceedings of the 19th International Conference on World Wide Web. 771--780.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ruben Prieto-Diaz. 1991. Implementing faceted classification for software reuse. Commun. ACM 34, 5 (1991), 88--97.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. J. Rosati, T. Di Noia, R. De Leone, T. Lukasiewicz, and V. W. Anelli. 2018. Combining RDF and SPARQL with CP-theories to reason about preferences in a linked data setting. Semantic Web 11, 3 (2018), 391--419.Google ScholarGoogle Scholar
  43. Tony Russell-Rose and Tyler Tate. 2013a. Designing the Search Experience: The Information Architecture of Discovery. Elsevier.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Tony Russell-Rose and Tyler Tate. 2013b. Designing the Search Experience: The Information Architecture of Discovery. Morgan Kaufmann.Google ScholarGoogle Scholar
  45. Giovanni Sacco. 2000. Dynamic taxonomies: A model for large information bases. IEEE Trans. Knowl. Data Eng. 12, 3 (2000), 468--479.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Giovanni Maria Sacco and Yannis Tzitzikas. 2009. Dynamic Taxonomies and Faceted Search: Theory, Practice, and Experience. Vol. 25. Springer Science 8 Business Media.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Michael Schuhmacher, Laura Dietz, and Simone Paolo Ponzetto. 2015. Ranking entities for web queries through text and knowledge. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. 1461--1470.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Olfa Slama. 2019. Personalized queries under a generalized user profile model based on fuzzy SPARQL preferences. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’19). IEEE, 1--6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Kostas Stefanidis, Georgia Koutrika, and Evaggelia Pitoura. 2011. A survey on representation, composition and application of preferences in database systems. ACM Trans. Data. Syst. 36, 3 (2011), 19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Bogaard Tessel. 2019. Metadata categorization for identifying search patterns in a digital library. Journal of Documentation 75, 2 (Jan. 2019), 270--286. DOI:https://doi.org/10.1108/JD-06-2018-0087Google ScholarGoogle Scholar
  51. Antonis Troumpoukis, Stasinos Konstantopoulos, and Angelos Charalambidis. 2017. An extension of SPARQL for expressing qualitative preferences. In Proceedings of the International Semantic Web Conference (ISWC’17). Springer International Publishing, Cham, 711--727.Google ScholarGoogle ScholarCross RefCross Ref
  52. Daniel Tunkelang. 2009. Faceted search. Synth. Lect. Info. Concepts Retriev. Serv. 1, 1 (2009), 1--80.Google ScholarGoogle ScholarCross RefCross Ref
  53. Yannis Tzitzikas, Nicolas Bailly, Panagiotis Papadakos, Nikos Minadakis, and George Nikitakis. 2016. Using preference-enriched faceted search for species identification. Int. J. Metadata, Semant. Ontol. 11, 3 (2016), 165--179.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Yannis Tzitzikas and Eleftherios Dimitrakis. 2019. Preference-enriched faceted search for voting aid applications. IEEE Trans. Emerg. Topics Comput. 7 (2019), 218--229. Issue 2. DOI:https://doi.org/10.1109/TETC.2016.2633432Google ScholarGoogle ScholarCross RefCross Ref
  55. Yannis Tzitzikas, Nikos Manolis, and Panagiotis Papadakos. 2017. Faceted exploration of RDF/S datasets: A survey. Intell. Info. Syst. 48, 2 (Apr. 2017), 329--364. DOI:https://doi.org/10.1007/s10844-016-0413-8Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Yannis Tzitzikas and Panagiotis Papadakos. 2012. Interactive exploration of multidimensional and hierarchical information spaces with real-time preference elicitation. Fundamenta Informaticae 20 (2012), 1--42.Google ScholarGoogle Scholar
  57. Agnes van Belle. 2017. Learning to Rank for Faceted Search: Bridging the Gap between Theory and Practice. Retrieved from https://ia601500.us.archive.org/1/items/learningtorankforfacetedsearchvanbelle2017/LearningtoRankforFacetedSearch_vanBelle2017.pdf.Google ScholarGoogle Scholar
  58. Damir Vandic, Steven Aanen, Flavius Frasincar, and Uzay Kaymak. 2017. Dynamic facet ordering for faceted product search engines. IEEE Trans. Knowl. Data Eng. 29, 5 (2017), 1004--1016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Damir Vandic, Flavious Frasincar, and Uzay Kaymak. 2013. Facet selection algorithms for web product search. In Proceedings of the 22nd International Conference on Information and Knowledge Management. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Chenyan Xiong and Jamie Callan. 2015. Esdrank: Connecting query and documents through external semi-structured data. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. 951--960.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Nikita Zhiltsov, Alexander Kotov, and Fedor Nikolaev. 2015. Fielded sequential dependence model for ad-hoc entity retrieval in the web of data. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. 253--262.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Faceted Search with Object Ranking and Answer Size Constraints

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Information Systems
            ACM Transactions on Information Systems  Volume 39, Issue 1
            January 2021
            329 pages
            ISSN:1046-8188
            EISSN:1558-2868
            DOI:10.1145/3423044
            Issue’s Table of Contents

            Copyright © 2020 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 16 November 2020
            • Accepted: 1 September 2020
            • Revised: 1 August 2020
            • Received: 1 December 2019
            Published in tois Volume 39, Issue 1

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format