skip to main content
research-article

Principles of KLM-style Defeasible Description Logics

Authors Info & Claims
Published:15 November 2020Publication History
Skip Abstract Section

Abstract

The past 25 years have seen many attempts to introduce defeasible-reasoning capabilities into a description logic setting. Many, if not most, of these attempts are based on preferential extensions of description logics, with a significant number of these, in turn, following the so-called KLM approach to defeasible reasoning initially advocated for propositional logic by Kraus, Lehmann, and Magidor. Each of these attempts has its own aim of investigating particular constructions and variants of the (KLM-style) preferential approach. Here our aim is to provide a comprehensive study of the formal foundations of preferential defeasible reasoning for description logics in the KLM tradition.

We start by investigating a notion of defeasible subsumption in the spirit of defeasible conditionals as studied by Kraus, Lehmann, and Magidor in the propositional case. In particular, we consider a natural and intuitive semantics for defeasible subsumption, and we investigate KLM-style syntactic properties for both preferential and rational subsumption. Our contribution includes two representation results linking our semantic constructions to the set of preferential and rational properties considered. Besides showing that our semantics is appropriate, these results pave the way for more effective decision procedures for defeasible reasoning in description logics. Indeed, we also analyse the problem of non-monotonic reasoning in description logics at the level of entailment and present an algorithm for the computation of rational closure of a defeasible knowledge base. Importantly, our algorithm relies completely on classical entailment and shows that the computational complexity of reasoning over defeasible knowledge bases is no worse than that of reasoning in the underlying classical DL ALC.

References

  1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider (Eds.). 2007. The Description Logic Handbook: Theory, Implementation and Applications (2nd ed.). Cambridge University Press.Google ScholarGoogle Scholar
  2. F. Baader and B. Hollunder. 1993. How to prefer more specific defaults in terminological default logic. In Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI’93), R. Bajcsy (Ed.). Morgan Kaufmann Publishers, 669--675.Google ScholarGoogle Scholar
  3. F. Baader and B. Hollunder. 1995. Embedding defaults into terminological knowledge representation formalisms. J. Autom. Reason. 14, 1 (1995), 149--180.Google ScholarGoogle ScholarCross RefCross Ref
  4. F. Baader, I. Horrocks, C. Lutz, and U. Sattler. 2017. An Introduction to Description Logic. Cambridge University Press.Google ScholarGoogle Scholar
  5. A. Baltag and S. Smets. 2006. Dynamic belief revision over multi-agent plausibility models. In Proceedings of the Conference on Logic and the Foundations of Game and Decision Theory (LOFT’06), W. van der Hoek and M. Wooldridge (Eds.). University of Liverpool, 11--24.Google ScholarGoogle Scholar
  6. A. Baltag and S. Smets. 2008. A qualitative theory of dynamic interactive belief revision. In Proceedings of the Conference on Logic and the Foundations of Game and Decision Theory (LOFT’08) (Texts in Logic and Games), G. Bonanno, W. van der Hoek, and M. Wooldridge (Eds.). Amsterdam University Press, 13--60.Google ScholarGoogle Scholar
  7. S. Benferhat, D. Dubois, and H. Prade. 1999. Possibilistic and standard probabilistic semantics of conditional knowledge bases. J. Logic Comput. 9, 6 (1999), 873--895.Google ScholarGoogle ScholarCross RefCross Ref
  8. P. Bonatti, M. Faella, I. M. Petrova, and L. Sauro. 2015. A new semantics for overriding in description logics. Artific. Intell. 222 (2015), 1--48.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. P. Bonatti, M. Faella, and L. Sauro. 2011. Defeasible inclusions in low-complexity DLs. J. Artific. Intell. Res. 42 (2011), 719--764.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P. Bonatti, C. Lutz, and F. Wolter. 2009. The complexity of circumscription in description logic. J. Artific. Intell. Res. 35 (2009), 717--773.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. P. Bonatti and L. Sauro. 2017. On the logical properties of the nonmonotonic description logic DL. Artific. Intell. 248 (2017), 85--111.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. P. A. Bonatti. 2019. Rational closure for all description logics. Artific. Intell. 274 (2019), 197--223. DOI:https://doi.org/10.1016/j.artint.2019.04.001Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. Booth, G. Casini, T. Meyer, and I. Varzinczak. 2015. On the entailment problem for a logic of typicality. In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15). 2805--2811.Google ScholarGoogle Scholar
  14. R. Booth, G. Casini, T. Meyer, and I. Varzinczak. 2019. On rational entailment for propositional typicality logic. Artific. Intell. 277 (2019). DOI:https://doi.org/10.1016/j.artint.2019.103178Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. R. Booth, T. Meyer, and I. Varzinczak. 2012. PTL: A propositional typicality logic. In Proceedings of the 13th European Conference on Logics in Artificial Intelligence (JELIA’12) (LNCS), L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.). Springer, 107--119.Google ScholarGoogle Scholar
  16. R. Booth, T. Meyer, and I. Varzinczak. 2013. A propositional typicality logic for extending rational consequence. In Trends in Belief Revision and Argumentation Dynamics, E. L. Fermé, D. M. Gabbay, and G. R. Simari (Eds.). Studies in Logic—Logic and Cognitive Systems, Vol. 48. King’s College Publications, 123--154.Google ScholarGoogle Scholar
  17. R. Booth and J. B. Paris. 1998. A note on the rational closure of knowledge bases with both positive and negative knowledge. J. Logic Lang. Info. 7, 2 (1998), 165--190.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. Boutilier. 1994. Conditional logics of normality: A modal approach. Artific. Intell. 68, 1 (1994), 87--154.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Loris Bozzato, Thomas Eiter, and Luciano Serafini. 2018. Enhancing context knowledge repositories with justifiable exceptions. Artif. Intell. 257 (2018), 72--126. DOI:https://doi.org/10.1016/j.artint.2017.12.005Google ScholarGoogle ScholarCross RefCross Ref
  20. Loris Bozzato, Thomas Eiter, and Luciano Serafini. 2019. Reasoning with justifiable exceptions in ℰ⊥ contextualized knowledge repositories. In Description Logic, Theory Combination, and All That—Essays Dedicated to Franz Baader on the Occasion of His 60th Birthday (Lecture Notes in Computer Science), Carsten Lutz, Uli Sattler, Cesare Tinelli, Anni-Yasmin Turhan, and Frank Wolter (Eds.), Vol. 11560. Springer, 110--134. DOI:https://doi.org/10.1007/978-3-030-22102-7_5Google ScholarGoogle Scholar
  21. Loris Bozzato and Luciano Serafini. 2013. Materialization calculus for contexts in the semantic web. In Proceedings of the 26th International Workshop on Description Logics (CEUR Workshop Proceedings), Thomas Eiter, Birte Glimm, Yevgeny Kazakov, and Markus Krötzsch (Eds.), Vol. 1014. CEUR-WS.org, 552--572. http://ceur-ws.org/Vol-1014/paper_51.pdf.Google ScholarGoogle Scholar
  22. G. Brewka. 1987. The logic of inheritance in frame systems. In Proceedings of the 10th International Joint Conference on Artificial Intelligence (IJCAI’87). Morgan Kaufmann Publishers, 483--488.Google ScholarGoogle Scholar
  23. K. Britz, G. Casini, T. Meyer, K. Moodley, U. Sattler, and I. Varzinczak. 2015. Rational Defeasible Reasoning for Expressive Description Logics. Technical Report. Centre for Artificial Intelligence Research (CAIR), South Africa.Retrieved from https://www.cair.org.za/sites/default/files/2019-08/TR-DefeasibleSubsumption.pdf.Google ScholarGoogle Scholar
  24. K. Britz, G. Casini, T. Meyer, K. Moodley, U. Sattler, and I. Varzinczak. 2017. Rational Defeasible Reasoning for Description Logics. Technical Report. University of Cape Town, South Africa. Retrieved from https://tinyurl.com/yc55y7ts.Google ScholarGoogle Scholar
  25. K. Britz, G. Casini, T. Meyer, and I. Varzinczak. 2013. Preferential role restrictions. In Proceedings of the 26th International Workshop on Description Logics. 93--106.Google ScholarGoogle Scholar
  26. K. Britz, J. Heidema, and W. Labuschagne. 2009. Semantics for dual preferential entailment. J. Philos. Logic 38 (2009), 433--446.Google ScholarGoogle ScholarCross RefCross Ref
  27. K. Britz, J. Heidema, and T. Meyer. 2008. Semantic preferential subsumption. In Proceedings of the 11th International Conference on Principles of Knowledge Representation and Reasoning (KR’08), J. Lang and G. Brewka (Eds.). AAAI Press/MIT Press, 476--484.Google ScholarGoogle Scholar
  28. K. Britz, J. Heidema, and T. Meyer. 2009. Modelling object typicality in description logics. In Proceedings of the 22nd Australasian Joint Conference on Artificial Intelligence (LNAI’09), A. Nicholson and X. Li (Eds.). Springer, 506--516.Google ScholarGoogle Scholar
  29. K. Britz, T. Meyer, and I. Varzinczak. 2011. Preferential reasoning for modal logics. Electron. Notes Theor. Comput. Sci. 278 (2011), 55--69. Proceedings of the 7th Workshop on Methods for Modalities (M4M’2011).Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. K. Britz, T. Meyer, and I. Varzinczak. 2011. Semantic foundation for preferential description logics. In Proceedings of the 24th Australasian Joint Conference on Artificial Intelligence (LNAI’11), D. Wang and M. Reynolds (Eds.). Springer, 491--500.Google ScholarGoogle Scholar
  31. K. Britz, T. Meyer, and I. Varzinczak. 2012. Normal modal preferential consequence. In Proceedings of the 25th Australasian Joint Conference on Artificial Intelligence (LNAI’12), M. Thielscher and D. Zhang (Eds.). Springer, 505--516.Google ScholarGoogle Scholar
  32. K. Britz and I. Varzinczak. 2013. Defeasible modalities. In Proceedings of the 14th Conference on Theoretical Aspects of Rationality and Knowledge (TARK’13). 49--60.Google ScholarGoogle Scholar
  33. K. Britz and I. Varzinczak. 2016. Introducing role defeasibility in description logics. In Proceedings of the 15th European Conference on Logics in Artificial Intelligence (JELIA’16) (LNCS), L. Michael and A.C. Kakas (Eds.). Springer, 174--189.Google ScholarGoogle Scholar
  34. K. Britz and I. Varzinczak. 2017. Context-based defeasible subsumption for . In Proceedings of the 13th International Symposium on Logical Formalizations of Commonsense Reasoning.Google ScholarGoogle Scholar
  35. K. Britz and I. Varzinczak. 2017. Toward defeasible . In Proceedings of the 30th International Workshop on Description Logics.Google ScholarGoogle Scholar
  36. K. Britz and I. Varzinczak. 2018. From KLM-style conditionals to defeasible modalities, and back. J. Appl. Non-class. Logics 28, 1 (2018), 92--121.Google ScholarGoogle ScholarCross RefCross Ref
  37. K. Britz and I. Varzinczak. 2018. Preferential accessibility and preferred worlds. J. Logic, Lang. Info. 27, 2 (2018), 133--155.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. K. Britz and I. Varzinczak. 2018. Rationality and context in defeasible subsumption. In Proceedings of the 10th International Symposium on Foundations of Information and Knowledge Systems (FoIKS’18) (LNCS), F. Ferrarotti and S. Woltran (Eds.). Springer, 114--132.Google ScholarGoogle Scholar
  39. K. Britz and I. Varzinczak. 2019. Contextual rational closure for defeasible . Ann. Math. Artific. Intell. 87, 1--2 (2019), 83--108.Google ScholarGoogle Scholar
  40. M. Cadoli, F. Donini, and M. Schaerf. 1990. Closed world reasoning in hybrid systems. In Proceedings of the 5th International Symposium on Methodologies for Intelligent Systems (ISMIS’90), Z. W. Ras, M. Zemankova, and M. L. Emrich (Eds.). Elsevier, 474--481.Google ScholarGoogle Scholar
  41. G. Casini, E. Fermé, T. Meyer, and I. Varzinczak. 2018. A semantic perspective on belief change in a preferential non-monotonic framework. In Proceedings of the 16th International Conference on Principles of Knowledge Representation and Reasoning (KR’18), M. Thielscher, F. Toni, and F. Wolter (Eds.). AAAI Press, 220--229. Retrieved from https://aaai.org/ocs/index.php/KR/KR18/paper/view/18071.Google ScholarGoogle Scholar
  42. G. Casini and T. Meyer. 2017. Belief change in a preferential non-monotonic framework. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17), C. Sierra (Ed.). ijcai.org, 929--935. DOI:https://doi.org/10.24963/ijcai.2017/129Google ScholarGoogle Scholar
  43. G. Casini, T. Meyer, K. Moodley, and R. Nortjé. 2014. Relevant closure: A new form of defeasible reasoning for description logics. In Proceedings of the 14th European Conference on Logics in Artificial Intelligence (JELIA’14). Number 8761 in LNCS. Springer, 92--106.Google ScholarGoogle Scholar
  44. G. Casini, T. Meyer, K. Moodley, U. Sattler, and I. Varzinczak. 2015. Introducing defeasibility into OWL ontologies. In Proceedings of the 14th International Semantic Web Conference (ISWC’15) (LNCS), M. Arenas, O. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. T. Groth, M. Dumontier, J. Heflin, K. Thirunarayan, and S. Staab (Eds.). Springer, 409--426.Google ScholarGoogle Scholar
  45. G. Casini and U. Straccia. 2010. Rational closure for defeasible description logics. In Proceedings of the 12th European Conference on Logics in Artificial Intelligence (JELIA’10) (LNCS), T. Janhunen and I. Niemelä (Eds.). Springer-Verlag, 77--90.Google ScholarGoogle Scholar
  46. G. Casini and U. Straccia. 2011. Defeasible inheritance-based description logics. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI’11). AAAI Press, 813--818. DOI:https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-142Google ScholarGoogle Scholar
  47. G. Casini and U. Straccia. 2012. Lexicographic closure for defeasible description logics. In Proceedings of the 8th Australasian Ontology Workshop (AOW’12) (CEUR Workshop Proceedings). CEUR, 28--39.Google ScholarGoogle Scholar
  48. G. Casini and U. Straccia. 2013. Defeasible inheritance-based description logics. J. Artific. Intell. Res. 48 (2013), 415--473.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. G. Casini, U. Straccia, and T. Meyer. 2019. A polynomial time subsumption algorithm for nominal safe ELO⊥ under rational closure. Info. Sci. 501 (2019), 588--620. DOI:https://doi.org/10.1016/j.ins.2018.09.037Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. B. Chellas. 1980. Modal Logic: An Introduction. Cambridge University Press.Google ScholarGoogle ScholarCross RefCross Ref
  51. F. M. Donini, D. Nardi, and R. Rosati. 2002. Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Logic 3, 2 (2002), 177--225.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. D. Dubois, J. Lang, and H. Prade. 1994. Possibilistic logic. In Handbook of Logic in Artificial Intelligence and Logic Programming, D. M. Gabbay, C. J. Hogger, and J. A. Robinson (Eds.). Vol. 3. Oxford University Press, 439--513.Google ScholarGoogle Scholar
  53. P. Gärdenfors and D. Makinson. 1994. Nonmonotonic inference based on expectations. Artific. Intell. 65, 2 (1994), 197--245.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. 2007. Preferential description logics. In Proceedings of the Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’07) (LNAI), N. Dershowitz and A. Voronkov (Eds.). Springer, 257--272.Google ScholarGoogle Scholar
  55. L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. 2008. Reasoning about typicality in preferential description logics. In Proceedings of the 11th European Conference on Logics in Artificial Intelligence (JELIA’08) (LNAI), S. Hölldobler, C. Lutz, and H. Wansing (Eds.). Springer, 192--205.Google ScholarGoogle Scholar
  56. L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. 2009. Analytic tableaux calculi for KLM logics of nonmonotonic reasoning. ACM Trans. Computat. Logic 10, 3 (2009), 18:1–18:47.Google ScholarGoogle Scholar
  57. L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. 2009. : A preferential extension of description logics. Fundamenta Informaticae 96, 3 (2009), 341--372.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. 2012. A minimal model semantics for nonmonotonic reasoning. In Proceedings of the 13th European Conference on Logics in Artificial Intelligence (JELIA’12) (LNCS), L. Fariñas del Cerro, A. Herzig, and J. Mengin (Eds.). Springer, 228--241.Google ScholarGoogle Scholar
  59. L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. 2013. A non-monotonic Description Logic for reasoning about typicality. Artific. Intell. 195 (2013), 165--202.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. 2015. Semantic characterization of rational closure: From propositional logic to description logics. Artific. Intell. 226 (2015), 1--33.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. 2013. Minimal model semantics and rational closure in description logics. In Informal Proceedings of the 26th International Workshop on Description Logics. 168--180. Retrieved from http://ceur-ws.org/Vol-1014/paper_5.pdf.Google ScholarGoogle Scholar
  62. Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. 2014. Rational closure in SHIQ. In Informal Proceedings of the 27th International Workshop on Description Logics. 543--555. Retrieved from http://ceur-ws.org/Vol-1193/paper_20.pdf.Google ScholarGoogle Scholar
  63. Laura Giordano, Valentina Gliozzi, Gian Luca Pozzato, and Riccardo Renzulli. 2017. An efficient reasoner for description logics of typicality and rational closure. In Proceedings of the 30th International Workshop on Description Logics (CEUR Workshop Proceedings), Alessandro Artale, Birte Glimm, and Roman Kontchakov (Eds.), Vol. 1879. CEUR-WS.org. Retrieved from http://ceur-ws.org/Vol-1879/paper25.pdf.Google ScholarGoogle Scholar
  64. G. Governatori. 2004. Defeasible description logics. In Proceedings of the Conference on Rules and Rule Markup Languages for the Semantic Web (LNCS), G. Antoniou and H. Boley (Eds.). Springer, 98--112.Google ScholarGoogle ScholarCross RefCross Ref
  65. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. 2003. Description logic programs: Combining logic programs with description logic. In Proceedings of the 12th International Conference on World Wide Web (WWW’03). ACM, 48--57.Google ScholarGoogle Scholar
  66. S. Heymans and D. Vermeir. 2002. A defeasible ontology language. In Proceedings of the On the Move Confederated International Conferences (CoopIS/DOA/ODBASE’02) (LNCS), R. Meersman and Z. Tari (Eds.). Springer, 1033--1046.Google ScholarGoogle Scholar
  67. S. Kraus, D. Lehmann, and M. Magidor. 1990. Nonmonotonic reasoning, preferential models and cumulative logics. Artific. Intell. 44 (1990), 167--207.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. D. Lehmann. 1989. What does a conditional knowledge base entail? In Proceedings of the 1st International Conference on Principles of Knowledge Representation and Reasoning (KR’89), R. Brachman and H. Levesque (Eds.). 212--222.Google ScholarGoogle Scholar
  69. D. Lehmann. 1995. Another perspective on default reasoning. Ann. Math. Artific. Intell. 15, 1 (1995), 61--82.Google ScholarGoogle ScholarCross RefCross Ref
  70. D. Lehmann and M. Magidor. 1992. What does a conditional knowledge base entail? Artific. Intell. 55 (1992), 1--60.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. T. Lukasiewicz. 2008. Expressive probabilistic description logics. Artific. Intell. 172, 6--7 (2008), 852--883.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. K. Moodley, T. Meyer, and I. Varzinczak. 2011. Root justifications for ontology repair. In Proceedings of the 5th International Conference on Web Reasoning and Rule Systems (RR’11) (LNCS), S. Rudolph and C. Gutierrez (Eds.). Springer, 275--280.Google ScholarGoogle Scholar
  73. L. Padgham and T. Zhang. 1993. A terminological logic with defaults: A definition and an application. In Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI’93), R. Bajcsy (Ed.). Morgan Kaufmann, 662--668.Google ScholarGoogle Scholar
  74. M. Pensel and A.-Y. Turhan. 2017. Including quantification in defeasible reasoning for the description logic . In Proceedings of the 14th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’17) (LNCS), M. Balduccini and T. Janhunen (Eds.). Springer, 78--84.Google ScholarGoogle ScholarCross RefCross Ref
  75. M. Pensel and A.-Y. Turhan. 2018. Reasoning in the defeasible description logic —Computing standard inferences under rational and relevant semantics. Int. J. Approx. Reason. 103 (2018), 28--70.Google ScholarGoogle ScholarCross RefCross Ref
  76. G. Qi, J. Z. Pan, and Q. Ji. 2007. Extending description logics with uncertainty reasoning in possibilistic logic. In Proceedings of the 9th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (LNAI), K. Mellouli (Ed.). Springer, 828--839.Google ScholarGoogle Scholar
  77. J. Quantz and V. Royer. 1992. A preference semantics for defaults in terminological logics. In Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR’92). 294--305.Google ScholarGoogle Scholar
  78. J. Quantz and M. Ryan. 1993. Preferential default description logics. Technical Report. TU Berlin. Retrieved from www.tu-berlin.de/fileadmin/fg53/KIT-Reports/r110.pdf.Google ScholarGoogle Scholar
  79. R. Reiter. 1980. A logic for default reasoning. Artific. Intell. 13, 1--2 (1980), 81--132.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Cleyton M. O. Rodrigues, Eunice Palmeira da Silva, Fred Freitas, Italo Jose da Silva Oliveira, and Ivan Varzinczak. 2019. LEGIS: A proposal to handle legal normative exceptions and leverage inference proofs readability. J. Appl. Logics 6, 5 (2019), 755--780. Retrieved from https://collegepublications.co.uk/ifcolog/?00034.Google ScholarGoogle Scholar
  81. H. Rott. 2001. Change, Choice and Inference: A Study of Belief Revision and Nonmonotonic Reasoning. Oxford University Press.Google ScholarGoogle Scholar
  82. K. Schild. 1991. A correspondence theory for terminological logics: Preliminary report. In Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI’91). 466--471.Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. S. Schlobach and R. Cornet. 2003. Non-standard reasoning services for the debugging of description logic terminologies. In Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI’03). 355--362.Google ScholarGoogle Scholar
  84. K. Sengupta, A. Alfa Krisnadhi, and P. Hitzler. 2011. Local closed world semantics: Grounded circumscription for OWL. In Proceedings of the 10th International Semantic Web Conference (ISWC’11) (LNCS), L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N. Noy, and E. Blomqvist (Eds.). Springer, 617--632.Google ScholarGoogle Scholar
  85. Y. Shoham. 1988. Reasoning about Change: Time and Causation from the Standpoint of Artificial Intelligence. MIT Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. U. Straccia. 1993. Default inheritance reasoning in hybrid KL-ONE-style logics. In Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI’93), R. Bajcsy (Ed.). Morgan Kaufmann, 676--681.Google ScholarGoogle Scholar
  87. I. J. Varzinczak. 2018. A note on a description logic of concept and role typicality for defeasible reasoning over ontologies. Logica Universalis 12, 3--4 (2018), 297--325.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Principles of KLM-style Defeasible Description Logics

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Computational Logic
        ACM Transactions on Computational Logic  Volume 22, Issue 1
        January 2021
        262 pages
        ISSN:1529-3785
        EISSN:1557-945X
        DOI:10.1145/3436816
        • Editor:
        • Orna Kupferman
        Issue’s Table of Contents

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 15 November 2020
        • Accepted: 1 August 2020
        • Revised: 1 June 2020
        • Received: 1 February 2020
        Published in tocl Volume 22, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format