• Open Access

Time-crystalline phases and period-doubling oscillations in one-dimensional Floquet topological insulators

Yiming Pan and Bing Wang
Phys. Rev. Research 2, 043239 – Published 16 November 2020

Abstract

In this work, we report a ubiquitous presence of topological Floquet time crystal (TFTC) in one-dimensional periodically driven systems. The rigidity and realization of spontaneous discrete time-translation symmetry (DTS) breaking in our TFTC model require necessarily coexistence of anomalous topological invariants (0 modes and π modes), instead of the presence of disorders or many-body localization. We found that in a particular frequency range of the underlying drive, the anomalous Floquet phase coexistence between 0 and π modes can produce the period doubling (2T, two cycles of the drive) that breaks the DTS spontaneously, leading to the subharmonic response (ω/2, half the drive frequency). The rigid period-2T oscillation is topologically protected against perturbations due to both nontrivially opening of 0 and π gaps in the quasienergy spectrum, thus, as a result, can be viewed as a specific “Rabi oscillation” between two Floquet eigenstates with certain quasienergy splitting π/T. Our modeling of the time-crystalline “ground state” can be easily realized in experimental platforms such as topological photonics and ultracold fields. Also, our work can bring significant interest to explore topological phase transition in Floquet systems and to bridge the gap between Floquet topological insulators and photonics, and period-doubled time crystals.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 12 October 2019
  • Accepted 9 September 2020

DOI:https://doi.org/10.1103/PhysRevResearch.2.043239

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Yiming Pan1,* and Bing Wang2

  • 1Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
  • 2National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China

  • *yiming.pan@weizmann.ac.il

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 2, Iss. 4 — November - December 2020

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×