Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast spin current generated from an antiferromagnet

Abstract

Antiferromagnets (AFMs) have the potential to push spintronic devices from a static condition or gigahertz frequency range to the terahertz range for the sake of high-speed processing. However, the insensitivity of AFMs to magnetic fields makes the manipulation of spin currents difficult. The ultrafast generation of the spin current in ferromagnet/heavy-metal (HM) structures has received a lot of attention in recent years, but whether a similar scenario can be observed in an AFM/HM system is still unknown. Here, we show the optical generation of ultrafast spin current in an AFM/HM heterostructure at zero external magnetic field and at room temperature by detecting the associated terahertz emission. We believe that this is a common phenomenon in antiferromagnets with strong nonlinear optical effects. Our results open an avenue of fundamental research into antiferromagnetism and a route to AFM spintronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup and THz spectrum.
Fig. 2: Effect of normal metal layers and state of laser polarization.
Fig. 3: Impact of sample azimuth and laser polarization.
Fig. 4: Effect of crystallographic orientation of NiO.

Similar content being viewed by others

Data availability

Source data are provided for this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  ADS  Google Scholar 

  2. Kimel, A. V. et al. Inertia-driven spin switching in antiferromagnets. Nat. Phys. 5, 727–731 (2009).

    Article  Google Scholar 

  3. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2010).

    Article  ADS  Google Scholar 

  4. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  5. Železný, J., Wadley, P., Olejník, K., Hoffmann, A. & Ohno, H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220–228 (2018).

    Article  Google Scholar 

  6. Cheng, R., Xiao, J., Niu, Q. & Brataas, A. Spin pumping and spin-transfer torques in antiferromagnets. Phys. Rev. Lett. 113, 057601 (2014).

    Article  ADS  Google Scholar 

  7. Wu, S. M. et al. Antiferromagnetic spin Seebeck effect. Phys. Rev. Lett. 116, 097204 (2016).

    Article  ADS  Google Scholar 

  8. Seki, S. et al. Thermal generation of spin current in an antiferromagnet. Phys. Rev. Lett. 115, 266601 (2015).

    Article  ADS  Google Scholar 

  9. Němec, P., Fiebig, M., Kampfrath, T. & Kimel, A. V. Antiferromagnetic opto-spintronics. Nat. Phys. 14, 229–241 (2018).

    Article  Google Scholar 

  10. Manz, S. et al. Reversible optical switching of antiferromagnetism in TbMnO3. Nat. Photon. 10, 653–656 (2016).

    Article  ADS  Google Scholar 

  11. Satoh, T. et al. Excitation of coupled spin–orbit dynamics in cobalt oxide by femtosecond laser pulses. Nat. Commun. 8, 638 (2017).

    Article  ADS  Google Scholar 

  12. Sänger, I., Pavlov, V. V., Bayer, M. & Fiebig, M. Distribution of antiferromagnetic spin and twin domains in NiO. Phys. Rev. B 74, 144401 (2006).

    Article  ADS  Google Scholar 

  13. Tzschaschel, C. et al. Ultrafast optical excitation of coherent magnons in antiferromagnetic NiO. Phys. Rev. B 95, 174407 (2017).

    Article  ADS  Google Scholar 

  14. Higuchi, T., Kanda, N., Tamaru, H. & Kuwata-Gonokami, M. Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO. Phys. Rev. Lett. 106, 047401 (2011).

    Article  ADS  Google Scholar 

  15. Shen, L. Q. et al. Dominant role of inverse Cotton–Mouton effect in ultrafast stimulation of magnetization precession in undoped yttrium iron garnet films by 400-nm laser pulses. Phys. Rev. B 97, 224430 (2018).

    Article  ADS  Google Scholar 

  16. Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    Article  ADS  Google Scholar 

  17. Bossini, D. & Rasing, Th. Femtosecond optomagnetism in dielectric antiferromagnets. Phys. Scr. 92, 024002 (2017).

    Article  ADS  Google Scholar 

  18. Saidl, V. et al. Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet. Nat. Photon. 11, 91–96 (2017).

    Article  ADS  Google Scholar 

  19. Seifert, T. S. et al. Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy. Nat. Commun. 9, 2899 (2018).

    Article  ADS  Google Scholar 

  20. Nishitani, J., Kozuki, K., Nagashima, T. & Hangyo, M. Terahertz radiation from coherent antiferromagnetic magnons excited by femtosecond laser pulses. Appl. Phys. Lett. 96, 221906 (2010).

    Article  ADS  Google Scholar 

  21. Kampfrath, T. et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 8, 256–260 (2013).

    Article  ADS  Google Scholar 

  22. Seifert, T. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photon. 10, 483–488 (2016).

    Article  ADS  Google Scholar 

  23. Huisman, T. J. et al. Femtosecond control of electric currents at the interfaces of metallic ferromagnetic heterostructures. Nat. Nanotechnol. 11, 455–458 (2015).

    Article  ADS  Google Scholar 

  24. Jungfleisch, M. B. et al. Control of terahertz emission by ultrafast spin-charge current conversion at Rashba interfaces. Phys. Rev. Lett. 120, 207207 (2018).

    Article  ADS  Google Scholar 

  25. Qiu, H. S. et al. Layer thickness dependence of the terahertz emission based on spin current in ferromagnetic heterostructures. Opt. Express 26, 15247–15254 (2018).

    Article  ADS  Google Scholar 

  26. Feng, Z. et al. Highly efficient spintronic terahertz emitter enabled by metal–dielectric photonic crystal. Adv. Opt. Mater. 6, 1800965 (2018).

    Article  Google Scholar 

  27. Chen, M., Mishra, R., Wu, Y., Lee, K. & Yang, H. Terahertz emission from compensated magnetic heterostructures. Adv. Opt. Mater. 6, 1800430 (2018).

    Article  Google Scholar 

  28. Komandin, G. A., Porodinkov, O. E., Spector, I. E. & Volkov, A. A. Multiphonon absorption in a MgO single crystal in the terahertz range. Phys. Solid State 51, 2045 (2009).

    Article  ADS  Google Scholar 

  29. Fiebig, M. et al. Second harmonic generation in the centrosymmetric antiferromagnet NiO. Phys. Rev. Lett. 87, 137202 (2001).

    Article  ADS  Google Scholar 

  30. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  ADS  Google Scholar 

  31. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  ADS  Google Scholar 

  32. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    Article  Google Scholar 

  33. Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).

    Article  ADS  Google Scholar 

  34. Zhou, C. et al. Broadband terahertz generation via the interface inverse Rashba–Edelstein effect. Phys. Rev. Lett. 121, 086801 (2018).

    Article  ADS  Google Scholar 

  35. Cheng, L. et al. Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2. Nat. Phys. 15, 347–351 (2019).

    Article  Google Scholar 

  36. Zhang, X.-C. & Auston, D. H. Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics. J. Appl. Phys. 71, 326–338 (1992).

    Article  ADS  Google Scholar 

  37. Welsh, G. H., Hunt, N. T. & Wynne, K. Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating. Phys. Rev. Lett. 98, 026803 (2007).

    Article  ADS  Google Scholar 

  38. Li, G. et al. Laser induced THz emission from femtosecond photocurrents in Co/ZnO/Pt and Co/Cu/Pt multilayers. J. Phys. D 51, 134001 (2018).

    Article  ADS  Google Scholar 

  39. Choi, G.-M., Min, B.-C., Lee, K.-J. & Cahill, D. G. Spin current generated by thermally driven ultrafast demagnetization. Nat. Commun. 5, 4334 (2014).

    Article  ADS  Google Scholar 

  40. Satoh, T. et al. Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light. Phys. Rev. Lett. 105, 077402 (2010).

    Article  ADS  Google Scholar 

  41. Kanda, N. et al. The vectorial control of magnetization by light. Nat. Commun. 2, 362 (2011).

    Article  ADS  Google Scholar 

  42. Tserkovnyak, Y., Brataas, A., Bauer, G. E. W. & Halperin, B. I. Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Mod. Phys. 77, 1375–1421 (2005).

    Article  ADS  Google Scholar 

  43. Adachi, H., Uchida, K., Saitoh, E. & Maekawa, S. Theory of the spin Seebeck effect. Rep. Prog. Phys. 76, 036501 (2013).

    Article  ADS  Google Scholar 

  44. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (grant nos. 61521001, 61731010, 61671234, 11727808 and 11674159), National Key Research and Development Program of China (grant nos. 2017YFA0700202 and 2017YFA0303202), and Natural Science Foundation of Jiangsu Province (grant no. BK20190300). It was also partially supported by the Fundamental Research Funds for the Central Universities and by the Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves. We acknowledge B. G. Wang and C. Zhang for their discussion on the mechanism of the spin current generation. We thank Y. F. Nie for helping to confirm the crystallographic orientation of the sample through the φ-scan measurement.

Author information

Authors and Affiliations

Authors

Contributions

D.W. and B.J. conceived and instructed this work. L.Z. and Y.T. fabricated and characterized the AFM/NM samples. H.Q. built the terahertz emission setup on the basis of preliminary work by C.Z. and performed the terahertz experiments. S.C. and S.M. provided the high-quality HAADF-STEM image. H.Z. and Q.Z. provided very revealing comments on the physical mechanism of the ultrafast interaction between light and matter. J.W., J.C. and P.W. contributed to the electrodynamic explanations for the THz experiments. H.Q. and L.Z. analysed experimental data and wrote the manuscript with contributions from all of the authors.

Corresponding authors

Correspondence to Di Wu or Biaobing Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–5 and Figs. 1–9.

Supplementary Data

The reflective high energy diffraction patterns and X-ray diffraction pattern of samples.

Supplementary Data

The X-ray diffraction φ-scan of samples.

Supplementary Data

The X-ray photoelectron spectroscopy of samples.

Supplementary Data

The polarization state of THz emission from the samples.

Supplementary Data

The dependence of THz waveforms on the sample orientation.

Supplementary Data

The influence of the field-cooling process of samples.

Source data

Source Data Fig. 1

A typical terahertz waveform and its spectrum.

Source Data Fig. 2

Effect of the NM layers and the state of the laser polarization.

Source Data Fig. 3

Impact of the sample azimuth and laser polarization.

Source Data Fig. 4

Effect of the crystallographic orientation of NiO.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, H., Zhou, L., Zhang, C. et al. Ultrafast spin current generated from an antiferromagnet. Nat. Phys. 17, 388–394 (2021). https://doi.org/10.1038/s41567-020-01061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-01061-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing