Skip to main content
Log in

Diffusion Combustion of a Round Hydrogen Microjet at Sub- and Supersonic Jet Velocity

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

The experimental research results on diffusion combustion of a round hydrogen microjet flowing from a slit micronozzle at subsonic and supersonic speeds are presented. For the first time, four scenarios of diffusion combustion of a round hydrogen microjet have been identified, including supersonic combustion in the presence of supersonic cells both in air and in hydrogen. It has been found that flame stabilization for a subsonic microjet velocity of hydrogen is associated with the presence of a “bottleneck flame region” leading to the nozzle choking phenomenon, and flame stabilization for a supersonic microjet flow is associated with the presence of supersonic cells. A hysteresis of the diffusion combustion process of a plane microjet of hydrogen is found depending on the method of ignition of the microjet (near or far from the nozzle exit) and the direction of change in the rate of its outflow (growth or decrease).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. G. Shmakov, G. R. Grek, V. V. Kozlov, O. P. Korobeinichev, and Yu. A. Litvinenko, Vestn. Nizhegorod. Gos. Univ., Ser. Fiz. 10 (2), 27 (2015).

    Google Scholar 

  2. Yu. A. Litvinenko, G. R. Grek, V. V. Kozlov, O. P. Korobeinichev, and A. G. Shmakov, Vestn. Nizhegorod. Gos. Univ., Ser. Fiz. 10 (2), 52 (2015).

    Google Scholar 

  3. G. R. Grek, M. M. Katasonov, G. V. Kozlov, and M. V. Litvinenko, Vestn. Nizhegorod. Gos. Univ., Ser. Fiz. 10 (2), 42 (2015).

    Google Scholar 

  4. V. V. Kozlov, G. R. Grek, O. P. Korobeinichev, Yu. A. Litvinenko, and A. G. Shmakov, Dokl. Phys. 61 (9), 457 (2016). https://doi.org/10.1134/S1028335816090068

    Article  ADS  Google Scholar 

  5. A. G. Shmakov, G. R. Grek, V. V. Kozlov, G. V. Kozlov, and Yu. A. Litvinenko, Sib. Fiz. Zh. 12 (2), 28 (2017).

    Google Scholar 

  6. V. V. Kozlov, G. R. Grek, G. V. Kozlov, Yu. A. Litvinenko, and A. G. Shmakov, Int. J. Hydrogen Energy, 44 (1), 457 (2019).

    Article  Google Scholar 

  7. V. V. Kozlov, G. R. Grek, O. P. Korobeinichev, Yu. A. Litvinenko, and A. G. Shmakov, Int. J. Hydrogen Energy 41 (44), 20240 (2016).

    Article  Google Scholar 

  8. V. V. Kozlov, G. R. Grek, G. V. Kozlov, Yu. A. Litvinenko, and A. G. Shmakov, Sib. Fiz. Zh. 12 (3), 62 (2017).

    Google Scholar 

  9. G. T. Kalghatgi, Combust. Sci. Technol. 41 (1–2), 14 (1984).

    Google Scholar 

  10. Yu. M. Annushkin and E. D. Sverdlov, Combust., Explos. Shock Waves (Engl. Transl.) 14, 597 (1978).

  11. V. Shentsov, R. Sakatsume, D. Makarov, K. Takeno, and V. Molkov, in Proc. 8th Int. Seminar on Fire and Explosion, April 25–28, 2016 (Hefei, 2016).

  12. V. V. Kozlov, G. R. Grek, Yu. A. Litvinenko, A. G. Shmakov, and V. V. Vikhorev, Dokl. Phys. 64 (3), 134 (2019)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 16-19-10330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kozlov.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinenko, Y.A., Grek, G.R., Kozlov, V.V. et al. Diffusion Combustion of a Round Hydrogen Microjet at Sub- and Supersonic Jet Velocity. Dokl. Phys. 65, 312–316 (2020). https://doi.org/10.1134/S1028335820090074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335820090074

Keywords:

Navigation