Skip to main content
Log in

Heat Waves: A New Danger for the Russian Power System

  • TECHNICAL SCIENCES
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

In this study, changes in temperature extremes in Russia are considered and the impact of these changes on the balance sheets of Russian power systems is analyzed. On the basis of the current meteorological observations and energy statistics, the change observed in extreme climatic characteristics over the past seventy years is calculated and its impact on power-grid regimes is estimated. It is established that the climate changes in Russia manifesting themselves in increasing air temperature in all regions and all seasons lead to a slowdown in the growth of winter and an increase in the growth of summer peak loads in almost all power grids, thereby contributing to an increase in the reliability of the energy supply. At the same time, disruptions of the electricity supply may arise in the southern energy-deficient regions in the summer as a result of violating the intersystem links and operation modes of generating facilities due to weather and climatic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. J. Arent, R. S. J. Tol, E. Faust, J. P. Hella, S. Kumar, K. M. Strzepek, F. L. Toth, and D. Yan, Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects (Cambridge Univ. Press, Cambridge, 2014).

    Google Scholar 

  2. Second Assessment Report of Rosgidromet on Climate Change and Its Consequences on the Territory of the Russian Federation, Ed. by V. M. Kattsov and S. M. Semenov (Rosgidromet, Moscow, 2014) [in Russian].

    Google Scholar 

  3. V. V. Klimenko, E. V. Fedotova, and A. G. Tereshin, Energy 142, 1010 (2018). https://doi.org/10.1016/j.energy.2017.10.069

    Article  Google Scholar 

  4. V. V. Klimenko, A. V. Klimenko, A. G. Tereshin, and E. V. Fedotova, Therm. Eng. 65 (5), 247 (2018). https://doi.org/10.1134/S0040601518050051

  5. I. N. Belova, A. S. Ginzburg, and L. A. Krivenok, Energy Procedia 149, 373 (2018). https://doi.org/10.1016/j.egypro.2018.08.201

    Article  Google Scholar 

  6. W. S. Jaglom, J. R. McFarland, M. F. Colley, C.  B.  Mack, B. Venkatesh, R. L. Miller, J. Haydel, P. A. Schultz, B. Perkins, J. H. Casola, J. A. Martinich, P. Cross, M. J. Kolian, and S. Kayin, Energy Policy 73, 524 (2014). https://doi.org/10.1016/j.enpol.2014.04.032

    Article  Google Scholar 

  7. V. V. Klimenko, A. S. Ginzburg, P. F. Demchenko, A. G. Tereshin, I. N. Belova, and E. V. Kasilova, Dokl. Phys. 61, 521 (2016). https://doi.org/10.1134/S1028335816100050

    Article  ADS  Google Scholar 

  8. V. V. Klimenko, A. G. Tereshin, and E. V. Kasilova, Dokl. Phys. 62 (11), 527 (2017).

    Article  ADS  Google Scholar 

  9. V. G. Semenov, Nov. Teplosnabzh., No. 1, 12 (2017).

  10. J. A. Añel, M. Fernández-González, X. Labandeira, X. López-Otero, and L. de la Torre, Atmosphere 8 (11), 209 (2017). https://doi.org/10.3390/atmos8110209

    Article  ADS  Google Scholar 

  11. D. M. Santágata, P. Castesana, C. E. Rössler, and D. R. Gómez, Energy Policy 106, 404 (2017). https://doi.org/10.1016/j.enpol.2017.04.006

    Article  Google Scholar 

  12. J. Hanski, T. Rosqvist, and D. Crawford-Brown, Reg. Environ. Change 18 (6), 1801 (2018). https://doi.org/10.1007/s10113-018-1312-z

    Article  Google Scholar 

  13. P. Alipour, S. Mukherjee, and R. Nateghi, Energy 185, 1143 (2019). https://doi.org/10.1016/j.energy.2019.07.074

    Article  Google Scholar 

  14. V. V. Klimenko and O. V. Mikushina, Energ. Politika, No. 5, 35 (2001).

    Google Scholar 

  15. P. A. Gunin, N. S. Serpokrylov, and Yu. A. Leikin, Vestn. Univ. Druzhby Nar., Ser. Ekol. Bezop. Zhiznedeyat., No. 3, 93 (2010).

Download references

ACKNOWLEDGMENTS

This study used data from the Federal State Statistics Service (Rosstat, www.gks.ru), the System Operator of unified power system of Russia (SO of UPS, www.so-ups.ru), the All-Russia Research Institute of Hydrometeorological Information—World DataCenter of Roshydromet (RIHMI-WDC, www.meteo.ru), and the State Atomic Energy Corporation (Rosatom, www.rosatom.ru).

Funding

This study was supported by the Russian Science Foundation, project no. 16-17-00114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Klimenko.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, V.V., Ginzburg, A.S., Fedotova, E.V. et al. Heat Waves: A New Danger for the Russian Power System. Dokl. Phys. 65, 349–354 (2020). https://doi.org/10.1134/S1028335820090050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335820090050

Keywords:

Navigation