Skip to main content
Log in

Progress of all-perovskite tandem solar cells: the role of narrow-bandgap absorbers

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Perovskite solar cells (PSCs) have gained increasing attention due to their excellent photovoltaic performance, achieving certified power conversion efficiency (PCE) of 25.2%. To further enhance PCE and break the Shockley-Queisser limit of the single junction PSCs, great efforts have been made in tandem solar cells based on perovskite, including perovskite/Si, and perovskite/perovskite (all-perovskite). Among them, all-perovskite tandem solar cells exhibit unique advantages of both low-cost fabrication and high efficiency. They have advanced rapidly in these years, due to the realization of stable and efficient narrow-bandgap perovskites. In this work, we review the development of monolithic all-perovskite tandem solar cells and highlight the critical role of narrow-bandgap perovskites in recent progress of all-perovskite solar cells. We also propose our perspective of future directions on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui D, Wang Y, Han L. Sci Bull, 2020, 65: 1306–1315

    Google Scholar 

  2. Shockley W, Queisser HJ. J Appl Phys, 1961, 32: 510–519

    CAS  Google Scholar 

  3. Meillaud F, Shah A, Droz C, Vallat-Sauvain E, Miazza C. Sol Energy Mater Sol Cells, 2006, 90: 2952–2959

    CAS  Google Scholar 

  4. de Vos A. J Phys D-Appl Phys, 1980, 13: 839–846

    Google Scholar 

  5. Wang Y, Yue Y, Yang X, Han L. Adv Energy Mater, 2018, 8: 1800249

    Google Scholar 

  6. Cai M, Wu Y, Chen H, Yang X, Qiang Y, Han L. Adv Sci, 2017, 4: 1600269

    Google Scholar 

  7. Wang Y, Han L. Sci China Chem, 2019, 62: 822–828

    CAS  Google Scholar 

  8. Jesper Jacobsson T, Correa-Baena JP, Pazoki M, Saliba M, Schenk K, Grätzel M, Hagfeldt A. Energy Environ Sci, 2016, 9: 1706–1724

    CAS  Google Scholar 

  9. Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV. Nano Lett, 2015, 15: 3692–3696

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Löper P, Moon SJ, Martín de Nicolas S, Niesen B, Ledinsky M, Nicolay S, Bailat J, Yum JH, De Wolf S, Ballif C. Phys Chem Chem Phys, 2015, 17: 1619–1629

    PubMed  Google Scholar 

  11. Jošt M, Bertram T, Koushik D, Marquez JA, Verheijen MA, Heinemann MD, Köhnen E, Al-Ashouri A, Braunger S, Lang F, Rech B, Unold T, Creatore M, Lauermann I, Kaufmann CA, Schlatmann R, Albrecht S. ACS Energy Lett, 2019, 4: 583–590

    Google Scholar 

  12. Lee JW, Hsieh YT, De Marco N, Bae SH, Han Q, Yang Y. J Phys Chem Lett, 2017, 8: 1999–2011

    CAS  PubMed  Google Scholar 

  13. Zhao D, Wang C, Song Z, Yu Y, Chen C, Zhao X, Zhu K, Yan Y. ACS Energy Lett, 2018, 3: 305–306

    CAS  Google Scholar 

  14. Heo JH, Im SH. Adv Mater, 2016, 28: 5121–5125

    CAS  PubMed  Google Scholar 

  15. Jiang F, Liu T, Luo B, Tong J, Qin F, Xiong S, Li Z, Zhou Y. J Mater Chem A, 2016, 4: 1208–1213

    CAS  Google Scholar 

  16. Eperon GE, Leijtens T, Bush KA, Prasanna R, Green T, Wang JTW, McMeekin DP, Volonakis G, Milot RL, May R, Palmstrom A, Slotcavage DJ, Belisle RA, Patel JB, Parrott ES, Sutton RJ, Ma W, Moghadam F, Conings B, Babayigit A, Boyen HG, Bent S, Giustino F, Herz LM, Johnston MB, McGehee MD, Snaith HJ. Science, 2016, 354: 861–865

    CAS  PubMed  Google Scholar 

  17. Lin R, Xiao K, Qin Z, Han Q, Zhang C, Wei M, Saidaminov MI, Gao Y, Xu J, Xiao M, Li A, Zhu J, Sargent EH, Tan H. Nat Energy, 2019, 4: 864–873

    CAS  Google Scholar 

  18. Rajagopal A, Yang Z, Jo SB, Braly IL, Liang PW, Hillhouse HW, Jen AKY. Adv Mater, 2017, 29: 1702140

    Google Scholar 

  19. Zhao D, Chen C, Wang C, Junda MM, Song Z, Grice CR, Yu Y, Li C, Subedi B, Podraza NJ, Zhao X, Fang G, Xiong RG, Zhu K, Yan Y. Nat Energy, 2018, 3: 1093–1100

    CAS  Google Scholar 

  20. Leijtens T, Prasanna R, Bush KA, Eperon GE, Raiford JA, Gold-Parker A, Wolf EJ, Swifter SA, Boyd CC, Wang HP, Toney MF, Bent SF, McGehee MD. Sustain Energy Fuels, 2018, 2: 2450–2459

    CAS  Google Scholar 

  21. Palmstrom AF, Eperon GE, Leijtens T, Prasanna R, Habisreutinger SN, Nemeth W, Gaulding EA, Dunfield SP, Reese M, Nanayakkara S, Moot T, Werner J, Liu J, To B, Christensen ST, McGehee MD, van Hest MFAM, Luther JM, Berry JJ, Moore DT. Joule, 2019, 3: 2193–2204

    CAS  Google Scholar 

  22. Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI. Science, 2015, 348: 1234–1237

    CAS  PubMed  Google Scholar 

  23. Stoumpos CC, Malliakas CD, Kanatzidis MG. Inorg Chem, 2013, 52: 9019–9038

    CAS  PubMed  Google Scholar 

  24. Chan SH, Wu MC, Lee KM, Chen WC, Lin TH, Su WF. J Mater Chem A, 2017, 5: 18044–18052

    CAS  Google Scholar 

  25. Jacobsson TJ, Pazoki M, Hagfeldt A, Edvinsson T. J Phys Chem C, 2015, 119: 25673–25683

    CAS  Google Scholar 

  26. Gu S, Lin R, Han Q, Gao Y, Tan H, Zhu J. Adv Mater, 2020, 1907392

  27. Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey SS, Ma T, Hayase S. J Phys Chem Lett, 2014, 5: 1004–1011

    CAS  PubMed  Google Scholar 

  28. Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG. J Am Chem Soc, 2014, 136: 8094–8099

    CAS  PubMed  Google Scholar 

  29. Im J, Stoumpos CC, Jin H, Freeman AJ, Kanatzidis MG. J Phys Chem Lett, 2015, 6: 3503–3509

    CAS  PubMed  Google Scholar 

  30. Anaya M, Correa-Baena JP, Lozano G, Saliba M, Anguita P, Roose B, Abate A, Steiner U, Grätzel M, Calvo ME, Hagfeldt A, Míguez H. J Mater Chem A, 2016, 4: 11214–11221

    CAS  Google Scholar 

  31. Parrott ES, Green T, Milot RL, Johnston MB, Snaith HJ, Herz LM. Adv Funct Mater, 2018, 28: 1802803

    Google Scholar 

  32. Goyal A, McKechnie S, Pashov D, Tumas W, van Schilfgaarde M, Stevanović V. Chem Mater, 2018, 30: 3920–3928

    CAS  Google Scholar 

  33. Li C, Ma R, He X, Yang T, Zhou Z, Yang S, Liang Y, Sun XW, Wang J, Yan Y, Choy WCH. Adv Energy Mater, 2020, 10: 1903013

    CAS  Google Scholar 

  34. Xu G, Bi P, Wang S, Xue R, Zhang J, Chen H, Chen W, Hao X, Li Y, Li Y. Adv Funct Mater, 2018, 28: 1804427

    Google Scholar 

  35. Jiang T, Chen Z, Chen X, Chen X, Xu X, Liu T, Bai L, Yang D, Di D, Sha WEI, Zhu H, Yang YM. ACS Energy Lett, 2019, 4: 1784–1790

    CAS  Google Scholar 

  36. Liu M, Chen Z, Yang Y, Yip HL, Cao Y. J Mater Chem A, 2019, 7: 17324–17333

    CAS  Google Scholar 

  37. Li C, Song Z, Zhao D, Xiao C, Subedi B, Shrestha N, Junda MM, Wang C, Jiang CS, Al-Jassim M, Ellingson RJ, Podraza NJ, Zhu K, Yan Y. Adv Energy Mater, 2019, 9: 1803135

    Google Scholar 

  38. Tong J, Song Z, Kim DH, Chen X, Chen C, Palmstrom AF, Ndione PF, Reese MO, Dunfield SP, Reid OG, Liu J, Zhang F, Harvey SP, Li Z, Christensen ST, Teeter G, Zhao D, Al-Jassim MM, van Hest MFAM, Beard MC, Shaheen SE, Berry JJ, Yan Y, Zhu K. Science, 2019, 364: 475–479

    CAS  PubMed  Google Scholar 

  39. Yang Z, Yu Z, Wei H, Xiao X, Ni Z, Chen B, Deng Y, Habisreutinger SN, Chen X, Wang K, Zhao J, Rudd PN, Berry JJ, Beard MC, Huang J. Nat Commun, 2019, 10: 4498

    PubMed  PubMed Central  Google Scholar 

  40. Jiang T, Chen Z, Chen X, Liu T, Chen X, Sha WEI, Zhu H, Yang YM. Sol RRL, 2020, 4: 1900467

    CAS  Google Scholar 

  41. Kapil G, Bessho T, Ng CH, Hamada K, Pandey M, Kamarudin MA, Hirotani D, Kinoshita T, Minemoto T, Shen Q, Toyoda T, Murakami TN, Segawa H, Hayase S. ACS Energy Lett, 2019, 4: 1991–1998

    CAS  Google Scholar 

  42. Liao W, Zhao D, Yu Y, Shrestha N, Ghimire K, Grice CR, Wang C, Xiao Y, Cimaroli AJ, Ellingson RJ, Podraza NJ, Zhu K, Xiong RG, Yan Y. J Am Chem Soc, 2016, 138: 12360–12363

    CAS  PubMed  Google Scholar 

  43. Du X, Qiu R, Zou T, Chen X, Chen H, Zhou H. Adv Mater Interfaces, 2019, 6: 1900413

    Google Scholar 

  44. Yuan J, Jiang Y, He T, Shi G, Fan Z, Yuan M. Sci China Chem, 2019, 62: 629–636

    CAS  Google Scholar 

  45. Prasanna R, Gold-Parker A, Leijtens T, Conings B, Babayigit A, Boyen HG, Toney MF, McGehee MD. J Am Chem Soc, 2017, 139: 11117–11124

    CAS  PubMed  Google Scholar 

  46. Yao YQ, Lv F, Luo L, Liao L, Wang G, Liu D, Xu C, Zhou G, Zhao X, Song Q. Sol RRL, 2020, 4: 1900396

    CAS  Google Scholar 

  47. Zheng X, Wu C, Jha SK, Li Z, Zhu K, Priya S. ACS Energy Lett, 2016, 1: 1014–1020

    CAS  Google Scholar 

  48. Zhao B, Abdi-Jalebi M, Tabachnyk M, Glass H, Kamboj VS, Nie W, Pearson AJ, Puttisong Y, Gödel KC, Beere HE, Ritchie DA, Mohite AD, Dutton SE, Friend RH, Sadhanala A. Adv Mater, 2017, 29: 1604744

    Google Scholar 

  49. Mosconi E, Umari P, De Angelis F. J Mater Chem A, 2015, 3: 9208–9215

    CAS  Google Scholar 

  50. Forgács D, Gil-Escrig L, Pérez-Del-Rey D, Momblona C, Werner J, Niesen B, Ballif C, Sessolo M, Bolink HJ. Adv Energy Mater, 2017, 7: 1602121

    Google Scholar 

  51. Sheng R, Hörantner MT, Wang Z, Jiang Y, Zhang W, Agosti A, Huang S, Hao X, Ho-Baillie A, Green M, Snaith HJ. J Phys Chem C, 2017, 121: 27256–27262

    CAS  Google Scholar 

  52. Ávila J, Momblona C, Boix P, Sessolo M, Anaya M, Lozano G, Vandewal K, Míguez H, Bolink HJ. Energy Environ Sci, 2018, 11: 3292–3297

    Google Scholar 

  53. Chang CY, Tsai BC, Hsiao YC, Lin MZ, Meng HF. Nano Energy, 2019, 55: 354–367

    CAS  Google Scholar 

  54. Li C, Wang ZS, Zhu HL, Zhang D, Cheng J, Lin H, Ouyang D, Choy WCH. Adv Energy Mater, 2018, 8: 1870155

    Google Scholar 

  55. McMeekin DP, Mahesh S, Noel NK, Klug MT, Lim JC, Warby JH, Ball JM, Herz LM, Johnston MB, Snaith HJ. Joule, 2019, 3: 387–401

    CAS  Google Scholar 

  56. Wei M, Xiao K, Walters G, Lin R, Zhao Y, Saidaminov MI, Todorović P, Johnston A, Huang Z, Chen H, Li A, Zhu J, Yang Z, Wang YK, Proppe AH, Kelley SO, Hou Y, Voznyy O, Tan H, Sargent EH. Adv Mater, 2020, 32: 1907058

    CAS  Google Scholar 

  57. Yu ZH, Yang ZB, Ni ZY, Shao YC, Chen B, Lin YZ, Wei HT, Yu ZJ, Holman Z, Huang JS. Nat Energy, 2020, 5: 657–665

    CAS  Google Scholar 

  58. Xiao K, Wen J, Han Q, Lin R, Gao Y, Gu S, Zang Y, Nie Y, Zhu J, Xu J, Tan H. ACS Energy Lett, 2020, 5: 2819–2826

    CAS  Google Scholar 

  59. Korshunova K, Winterfeld L, Beenken WJD, Runge E. Phys Status Solidi B, 2016, 253: 1907–1915

    CAS  Google Scholar 

  60. Chung I, Song JH, Im J, Androulakis J, Malliakas CD, Li H, Freeman AJ, Kenney JT, Kanatzidis MG. J Am Chem Soc, 2012, 134: 8579–8587

    CAS  PubMed  Google Scholar 

  61. Li Z, Yang M, Park JS, Wei SH, Berry JJ, Zhu K. Chem Mater, 2016, 28: 284–292

    Google Scholar 

  62. Yi C, Luo J, Meloni S, Boziki A, Ashari-Astani N, Grätzel C, Zakeeruddin SM, Röthlisberger U, Grätzel M. Energy Environ Sci, 2016, 9: 656–662

    CAS  Google Scholar 

  63. Wu T, Liu X, He X, Wang Y, Meng X, Noda T, Yang X, Han L. Sci China Chem, 2020, 63: 107–115

    CAS  Google Scholar 

  64. Lee S, Kang DW. ACS Appl Mater Interfaces, 2017, 9: 22432–22439

    CAS  PubMed  Google Scholar 

  65. Ball JM, Buizza L, Sansom HC, Farrar MD, Klug MT, Borchert J, Patel J, Herz LM, Johnston MB, Snaith HJ. ACS Energy Lett, 2019, 4: 2748–2756

    CAS  Google Scholar 

  66. Zong Y, Zhou Z, Chen M, Padture NP, Zhou Y. Adv Energy Mater, 2018, 8: 1800997

    Google Scholar 

  67. Xu X, Chueh CC, Yang Z, Rajagopal A, Xu J, Jo SB, Jen AKY. Nano Energy, 2017, 34: 392–398

    CAS  Google Scholar 

  68. Ban H, Sun Q, Zhang T, Li H, Shen Y, Wang M. Sol RRL, 2020, 4: 1900457

    CAS  Google Scholar 

  69. Xie F, Chen CC, Wu Y, Li X, Cai M, Liu X, Yang X, Han L. Energy Environ Sci, 2017, 10: 1942–1949

    CAS  Google Scholar 

  70. Lian X, Chen J, Zhang Y, Qin M, Li J, Tian S, Yang W, Lu X, Wu G, Chen H. Adv Funct Mater, 2019, 29: 1807024

    Google Scholar 

  71. Noel NK, Congiu M, Ramadan AJ, Fearn S, McMeekin DP, Patel JB, Johnston MB, Wenger B, Snaith HJ. Joule, 2017, 1: 328–343

    CAS  Google Scholar 

  72. Ma C, Leng C, Ji Y, Wei X, Sun K, Tang L, Yang J, Luo W, Li C, Deng Y, Feng S, Shen J, Lu S, Du C, Shi H. Nanoscale, 2016, 8: 18309–18314

    CAS  PubMed  Google Scholar 

  73. Wang Z, Lin Q, Chmiel FP, Sakai N, Herz LM, Snaith HJ. Nat Energy, 2017, 2: 17135

    CAS  Google Scholar 

  74. Zhou XY, Zhang LZ, Wang XZ, Liu C, Chen S, Zhang M, Li X, Yi W, Xu D. Adv Mater, 2020, 32: 1908107

    CAS  Google Scholar 

  75. Nayak PK, Cahen D. Adv Mater, 2014, 26: 1622–1628

    CAS  PubMed  Google Scholar 

  76. Meng X, Wu T, Liu X, He X, Noda T, Wang Y, Segawa H, Han L. J Phys Chem Lett, 2020, 11: 2965–2971

    CAS  PubMed  Google Scholar 

  77. Liu X, Wang Y, Wu T, He X, Meng X, Barbaud J, Chen H, Segawa H, Yang X, Han L. Nat Commun, 2020, 11: 2678

    CAS  PubMed  PubMed Central  Google Scholar 

  78. He X, Wu T, Liu X, Wang Y, Meng X, Wu J, Noda T, Yang X, Moritomo Y, Segawa H, Han L. J Mater Chem A, 2020, 8: 2760–2768

    CAS  Google Scholar 

  79. Liu X, Wang Y, Xie F, Yang X, Han L. ACS Energy Lett, 2018, 3: 1116–1121

    CAS  Google Scholar 

  80. Meng Y, Hu Z, Ai N, Jiang Z, Wang J, Peng J, Cao Y. ACS Appl Mater Interfaces, 2014, 6: 5122–5129

    CAS  PubMed  Google Scholar 

  81. Martí A, Araújo GL. Sol Energy Mater Sol Cells, 1996, 43: 203–222

    Google Scholar 

  82. Henry CH. J Appl Phys, 1980, 51: 4494–4500

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11834011, 11674219, 11574199).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qifeng Han or Liyuan Han.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Wu, T., Wang, Y. et al. Progress of all-perovskite tandem solar cells: the role of narrow-bandgap absorbers. Sci. China Chem. 64, 218–227 (2021). https://doi.org/10.1007/s11426-020-9870-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9870-4

Keywords

Navigation