Skip to main content
Log in

Hydrogen-bond-assisted transition-metal-free catalytic transformation of amides to esters

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The amide C-N cleavage has drawn a broad interest in synthetic chemistry, biological process and pharmaceutical industry. Transition-metal, luxury ligand or excess base were always vital to the transformation. Here, we developed a transition-metal-free hydrogen-bond-assisted esterification of amides with only catalytic amount of base. The proposed crucial role of hydrogen bonding for assisting esterification was supported by control experiments, density functional theory (DFT) calculations and kinetic studies. Besides broad substrate scopes and excellent functional groups tolerance, this base-catalyzed protocol complements the conventional transition-metal-catalyzed esterification of amides and provides a new pathway to catalytic cleavage of amide C-N bonds for organic synthesis and pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sewald N, Jakubke HD. Peptides: Chemistry and Biology. Weinheim: Wiley-VCH, 2002

    Google Scholar 

  2. Greenberg A, Breneman CM, Liebman JF. The Amide Linkage: Structural Significance: Chemistry, Biochemistry and Materials Science. New York: Wiley-Interscience, 2003

    Google Scholar 

  3. Roughley SD, Jordan AM. J Med Chem, 2011, 54: 3451–3479

    CAS  PubMed  Google Scholar 

  4. Kudo F, Miyanaga A, Eguchi T. Nat Prod Rep, 2014, 31: 1056–1073

    CAS  PubMed  Google Scholar 

  5. Guo X, Facchetti A, Marks TJ. Chem Rev, 2014, 114: 8943–9021

    CAS  PubMed  Google Scholar 

  6. Gehringer M, Laufer SA. J Med Chem, 2019, 62: 5673–5724

    CAS  PubMed  Google Scholar 

  7. Topczewski JJ, Cabrera PJ, Saper NI, Sanford MS. Nature, 2016, 531: 220–224

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mujika JI, Mercero JM, Lopez X. J Am Chem Soc, 2005, 127: 4445–4453

    CAS  PubMed  Google Scholar 

  9. Kemnitz CR, Loewen MJ. J Am Chem Soc, 2007, 129: 2521–2528

    CAS  PubMed  Google Scholar 

  10. Glover SA, Rosser AA. J Org Chem, 2012, 77: 5492–5502

    CAS  PubMed  Google Scholar 

  11. Mashima K, Nishii Y, Nagae H. Chem Rec, 2020, 20: 332–343

    CAS  PubMed  Google Scholar 

  12. Chaudhari MB, Gnanaprakasam B. Chem Asian J, 2019, 14: 76–93

    CAS  PubMed  Google Scholar 

  13. Shi S, Nolan SP, Szostak M. Acc Chem Res, 2018, 51: 2589–2599

    CAS  PubMed  Google Scholar 

  14. Hie L, Fine Nathel NF, Shah TK, Baker EL, Hong X, Yang YF, Liu P, Houk KN, Garg NK. Nature, 2015, 524: 79–83

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hie L, Baker EL, Anthony SM, Desrosiers JN, Senanayake C, Garg NK. Angew Chem Int Ed, 2016, 55: 15129–15132

    CAS  Google Scholar 

  16. Bourne-Branchu Y, Gosmini C, Danoun G. Chem Eur J, 2017, 23: 10043–10047

    CAS  PubMed  Google Scholar 

  17. Chen H, Chen DH, Huang PQ. Sci China Chem, 2020, 63: 370–376

    CAS  Google Scholar 

  18. Ronson TO, Renders E, Van Steijvoort BF, Wang X, Wybon CCD, Prokopcová H, Meerpoel L, Maes BUW. Angew Chem Int Ed, 2019, 58: 482–487

    CAS  Google Scholar 

  19. Li JF, Wang YF, Wu YY, Liu WJ, Wang JW. Catal Lett, 2020, 150: 874–880

    CAS  Google Scholar 

  20. Nagae H, Hirai T, Kato D, Soma S, Akebi SY, Mashima K. Chem Sci, 2019, 10: 2860–2868

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Toyao T, Nurnobi Rashed M, Morita Y, Kamachi T, Hakim Siddiki SMA, Ali MA, Touchy AS, Kon K, Maeno Z, Yoshizawa K, Shimizu K. ChemCatChem, 2019, 11: 449–456

    CAS  Google Scholar 

  22. Rashed MN, Siddiki SMAH, Touchy AS, Jamil MAR, Poly SS, Toyao T, Maeno Z, Shimizu K. Chem Eur J, 2019, 25: 10594–10605

    CAS  PubMed  Google Scholar 

  23. Wybon CCD, Mensch C, Hollanders K, Gadais C, Herrebout WA, Ballet S, Maes BUW. ACS Catal, 2018, 8: 203–218

    CAS  Google Scholar 

  24. Subramanian K, Yedage SL, Bhanage BM. Adv Synth Catal, 2018, 360: 2511–2521

    CAS  Google Scholar 

  25. Gao Y, Ji CL, Hong X. Sci China Chem, 2017, 60: 1413–1424

    CAS  Google Scholar 

  26. Wang G, Shi Q, Hu W, Chen T, Guo Y, Hu Z, Gong M, Guo J, Wei D, Fu Z, Huang W. Nat Commun, 2020, 11: 946–955

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fang WY, Zha GF, Qin HL. Org Lett, 2019, 21: 8657–8661

    CAS  PubMed  Google Scholar 

  28. Wu H, Guo W, Daniel S, Li Y, Liu C, Zeng Z. Chem Eur J, 2018, 24: 3444–3447

    CAS  PubMed  Google Scholar 

  29. Li G, Lei P, Szostak M. Org Lett, 2018, 20: 5622–5625

    CAS  PubMed  Google Scholar 

  30. Ye D, Liu Z, Chen H, Sessler JL, Lei C. Org Lett, 2019, 21: 6888–6892

    CAS  PubMed  Google Scholar 

  31. Bourne-Branchu Y, Gosmini C, Danoun G. Chem Eur J, 2019, 25: 2663–2674

    CAS  PubMed  Google Scholar 

  32. Weires NA, Caspi DD, Garg NK. ACS Catal, 2017, 7: 4381–4385

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu K, Huang Z, Liu C, Zhang H, Lei A. Chem Commun, 2015, 51: 2286–2289

    CAS  Google Scholar 

  34. White EH. J Am Chem Soc, 1955, 77: 6011–6014

    CAS  Google Scholar 

  35. Glatzhofer DT, Roy RR, Cossey KN. Org Lett, 2002, 4: 2349–2352

    CAS  PubMed  Google Scholar 

  36. Ouyang K, Hao W, Zhang WX, Xi Z. Chem Rev, 2015, 115: 12045–12090

    CAS  PubMed  Google Scholar 

  37. Wang Q, Su Y, Li L, Huang H. Chem Soc Rev, 2016, 45: 1257–1272

    CAS  PubMed  Google Scholar 

  38. Takise R, Muto K, Yamaguchi J. Chem Soc Rev, 2017, 46: 5864–5888

    CAS  PubMed  Google Scholar 

  39. Brix K, Stöcker W. Proteases: Structure and Function. New York: Springer, 2013

    Google Scholar 

  40. Fuentes-Prior P, Salvesen GS. Biochem J, 2004, 384: 201–232

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rotonda J, Nicholson DW, Fazil KM, Gallant M, Gareau Y, Labelle M, Peterson EP, Rasper DM, Ruel R, Vaillancourt JP, Thornberry NA, Becker JW. Nat Struct Mol Biol, 1996, 3: 619–625

    CAS  Google Scholar 

  42. Briot A, Baehr C, Brouillard R, Wagner A, Mioskowski C. J Org Chem, 2004, 69: 1374–1377

    CAS  PubMed  Google Scholar 

  43. Dander JE, Garg NK. ACS Catal, 2017, 7: 1413–1423

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Budavari S, O’Neill M, Smith A, Heckelman P, Kinneary J. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 12th Ed. New York: Merck & Co., Inc., 1997

    Google Scholar 

  45. Liu D, Tang S, Yi H, Liu C, Qi X, Lan Y, Lei A. Chem Eur J, 2014, 20: 15605–15610

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFA0202902), the National Natural Science Foundation of China (21572036, 21871059, 21861132002), and the Department of Chemistry at Fudan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Tu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Li, J., Wang, J. et al. Hydrogen-bond-assisted transition-metal-free catalytic transformation of amides to esters. Sci. China Chem. 64, 66–71 (2021). https://doi.org/10.1007/s11426-020-9883-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9883-3

Keywords

Navigation