Skip to main content
Log in

Rate of Radiative p2H Capture

  • Published:
Russian Physics Journal Aims and scope

Within the framework of the modified potential cluster model with forbidden states, we consider radiative p2H capture at energies from 1 keV to 10 MeV. It is shown that on the basis of potentials that have been matched with the energy of the bound state and its asymptotic constant, it is possible to correctly reproduce the available experimental data. On the basis of the obtained total cross sections, a calculation of the reaction rate of p2H capture in the temperature range from 0.01 T9 to 10 T9 is performed. Results of this calculation are approximated by simple expressions, which simplifies their use in other studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Barnes, D. D. Clayton, and D. N. Schramm, Essays in Nuclear Astrophysics, Cambridge University Press, Cambridge (1982).

    Google Scholar 

  2. K. A. Snover, Solar p–p chain and the 7Be(p,γ)8B S-factor, University of Washington, CEPRA, NDM03 (January 6, 2008).

  3. S. B. Dubovichenko, Yad. Fiz., 58, 1253 (1995).

    Google Scholar 

  4. S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, Eur. Phys. J. A, 39, No. 2, 139 (2009).

    Article  ADS  Google Scholar 

  5. S. B. Dubovichenko, Russ. Phys. J., 54, No. 2, 157 (2011).

    Article  Google Scholar 

  6. S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, Élem. Chast. At. Yad., 28, 1529 (1997).

    Google Scholar 

  7. S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, Int. J. Mod. Phys. E, 21, No. 3, 1250039 (2012); https://doi.org/10.1142/S0218301312500395.

    Article  ADS  Google Scholar 

  8. S. B. Dubovichenko, Thermonuclear Processes in Stars and in the Universe [in Russian], Lambert Academic Publishing, Saarbrücken (2019); https://www.morebooks.shop/store/ru/book/Термоядерные-процессы-в-звездах-и-Вселенной/isbn/978-620-0-25609-6.

  9. S. B. Dubovichenko, Thermonuclear Processes in Stars and Universe, Second English edition, Scholar’s Press, Saarbrücken (2015); https://www.morebooks.de/store/ru/book/thermonuclear-processes-in-stars/isbn/978-3-639-76478-9.

    Google Scholar 

  10. S. B. Dubovichenko, Radiative Neutron Capture and Primordial Nucleosynthesis of the Universe [in Russian], Lambert Academic Publishing, Saarbrücken (2016); https://www.morebooks.de/store/ru/book/Радиационный-захват-нейтронов/isbn/978-3-659-82490-6.

    Google Scholar 

  11. S. B. Dubovichenko, Radiative Neutron Capture. Primordial Nucleosynthesis of the Universe, First English edition, Walter de Gruyter Publishing House, Berlin (2019); https://doi.org/10.1515/9783110619607-202.

  12. W. A. Fowler, G. R. Caughlan, and B. A. Zimmerman, Annu. Rev. Astron. Astrophys., 13, 69 (1975).

    Article  ADS  Google Scholar 

  13. С. Angulo et al., Nucl. Phys. A, 656, 3 (1999).

    Article  ADS  Google Scholar 

  14. http://physics.nist.gov/cgi-bin/cuu/Value?mud|search_for=atomnuc!.

  15. J. E. Purcell et al., Nucl. Phys., 848, 1 (2010).

    Article  Google Scholar 

  16. V. G. Neudatchin et al., Phys. Rev. C, 45, 1512 (1992).

    Article  ADS  Google Scholar 

  17. G. R. Plattner, M. Bornard, and R. D. Viollier, Phys. Rev. Lett., 39, 127 (1977).

    Article  ADS  Google Scholar 

  18. M. Bornard et al., Nucl. Phys. A, 294, 492 (1978).

    Article  ADS  Google Scholar 

  19. G. R. Plattner and R. D. Viollier, Nucl. Phys. A, 365, 8 (1981).

    Article  ADS  Google Scholar 

  20. C. Casella et al., Nucl. Phys. A, 706, 203 (2002).

    Article  ADS  Google Scholar 

  21. G. J. Schimd et al., Phys. Rev. C, 56, 2565 (1997).

    Article  ADS  Google Scholar 

  22. L. Ma et al., Phys. Rev. C, 55, 588 (1997).

    Article  ADS  Google Scholar 

  23. G. J. Schimd et al., Phys. Rev. Lett., 76, 3088 (1996).

    Article  ADS  Google Scholar 

  24. G. J. Schimd et al., Phys. Rev. C, 52, R1732 (1995).

    Article  ADS  Google Scholar 

  25. C. Iliadis et al., Astrophys. J., 831, 107 (2016).

    Article  ADS  Google Scholar 

  26. G. M. Griffiths, E. A. Larson, and L. P. Robertson, Can. J. Phys., 40, 402 (1962).

    Article  ADS  Google Scholar 

  27. J. B. Warren et al., Phys. Rev., 132, 1691 (1963).

    Article  ADS  Google Scholar 

  28. B. L. Berman, L. J. Koester, and J. H. Smith, Phys. Rev., 133, B117 (1964).

    Article  ADS  Google Scholar 

  29. Y. Xu et al., Nucl. Phys. A, 918, 61 (2013).

    Article  ADS  Google Scholar 

  30. G. R. Caughlan and W. A. Fowler, At. Data Nucl. Data Tabl., 40, 283 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Dubovichenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 14–20, July, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubovichenko, S.B., Chechin, L.M., Burkova, N.A. et al. Rate of Radiative p2H Capture. Russ Phys J 63, 1118–1125 (2020). https://doi.org/10.1007/s11182-020-02170-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02170-9

Keywords

Navigation