Skip to main content
Log in

Band-Gap Sensitived Seebeck Effect in Heavy Group-IV Monolayers

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We have systematically investigated the spin- and valley-dependent Seebeck effect in irradiated heavy group-IV monolayers including silicene, germanene, and stanene by means of semi-classical Boltzmann equation in diffusive regime. Due to the interplay of strong intrinsic spin-orbit coupling, perpendicular electric field, and off-resonant light field, the temperature-driven spin and valley conductivity can be controllable effectively. Except for numerical results, the amplitude of Seebeck coefficient is analyzed and found to be in direct proportion to the band gap at high temperature. It supplies a flexible method to modulate the Seebeck effect. In addition, we have compared the thermoelectric transport properties of different group-IV materials and found that the figure of merit shows great enhancement from silicene to stanene. These findings are excepted to provide a platform for the heavy group-IV materials in future spin–valley thermal and energy-saving devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. C.-C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011).

    ADS  Google Scholar 

  2. Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, and J. Lu, Nano Lett. 12, 113 (2012).

    ADS  Google Scholar 

  3. S. Rachel and M. Ezawa, Phys. Rev. B 89, 195303 (2014).

    ADS  Google Scholar 

  4. F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, D. Qian, S.-C. Zhang, and J.-F. Jia, Nat. Mater. 14, 1020 (2015).

    ADS  Google Scholar 

  5. H. Zhang, T. Zhou, J. Zhang, B. Zhao, Y. Yao, and Z. Yang, Phys. Rev. B 94, 235409 (2016).

    ADS  Google Scholar 

  6. E. G. Marin, D. Marian, G. Iannaccone, and G. Fiori, Phys. Rev. Appl. 10, 044063 (2018).

    ADS  Google Scholar 

  7. M. Ezawa, J. Phys. Soc. Jpn. 84, 121003 (2015).

    ADS  Google Scholar 

  8. M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012).

    ADS  Google Scholar 

  9. M. Ezawa, Phys. Rev. Lett. 110, 026603 (2013).

    ADS  Google Scholar 

  10. V. Vargiamidis and P. Vasilopoulos, J. Appl. Phys. 117, 094305 (2015).

    ADS  Google Scholar 

  11. H. Zhou, Y. Cai, G. Zhang, and Y.-W. Zhang, Phys. Rev. B 94, 045423 (2016).

    ADS  Google Scholar 

  12. Y. Xu, X. Zhou, and G. Jin, Appl. Phys. Lett. 108, 203104 (2016).

    ADS  Google Scholar 

  13. X. Zhai, S. Wang, and Y. Zhang, New J. Phys. 19, 063007 (2017).

    ADS  Google Scholar 

  14. L. Liang, E. Cruz-Silva, E. Costa Girão, and V. Meunier, Phys. Rev. B 86, 115438 (2012).

    ADS  Google Scholar 

  15. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. Lau, Nano Lett. 8, 902 (2008).

    ADS  Google Scholar 

  16. J. Seol, I. Jo, A. Moore, L. Lindsay, Z. Aitken, M. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. Ruoff, and L. Shi, Science (Washington, DC, U. S.) 328, 213 (2010).

    ADS  Google Scholar 

  17. P. Vogt, P. de Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. le Lay, Phys. Rev. Lett. 108, 155501 (2012).

    ADS  Google Scholar 

  18. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-Takamura, Phys. Rev. Lett. 108, 245501 (2012).

    ADS  Google Scholar 

  19. L. Chen, C.-C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, and K. Wu, Phys. Rev. Lett. 109, 056804 (2012).

    ADS  Google Scholar 

  20. L. Li, S.-Z. Lu, J. Pan, Z. Qin, Y.-Q. Wang, Y. Wang, G.-Y. Cao, S. Du, and H.-J. Gao, Adv. Mater. 26, 4820 (2014).

    Google Scholar 

  21. T. Yokoyama, Phys. Rev. B 87, 241409(R) (2013).

  22. V. P. Gusynin, S. G. Sharapov, and A. A. Varlamov, Phys. Rev. B 90, 155107 (2014).

    ADS  Google Scholar 

  23. X. Zhai, J. Gu, R. Wen, R.-W. Liu, M. Zhu, X. Zhou, L.-Y. Gong, and X. Li, Phys. Rev. B 99, 085421 (2019).

    ADS  Google Scholar 

  24. Y. Mohammadi, Solid State Commun. 272, 37 (2018).

    ADS  Google Scholar 

  25. T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys. Rev. B 84, 235108 (2011).

    ADS  Google Scholar 

  26. J. Cayssol, B. Dóra, F. Simon, and R. Moessner, Phys. Status Solidi RRL 7, 101 (2013).

    Google Scholar 

  27. H. J. Goldsmid, Introduction to Thermoelectricity (Springer, Berlin, 2009).

    Google Scholar 

  28. E. H. Hwang, E. Rossi, and S. Das Sarma, Phys. Rev. B 80, 235415 (2009).

    ADS  Google Scholar 

  29. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, New York, 1976).

  30. A. A. Patel and S. Mukerjee, Phys. Rev. B 86, 075411 (2012).

    ADS  Google Scholar 

  31. B. Z. Rameshti and A. G. Moghaddam, Phys. Rev. B 91, 155407 (2015).

    ADS  Google Scholar 

  32. M. Lundstrom, Fundamentals of Carrier Transport (Cambridge Univ. Press, Cambridge, UK, 2000).

    Google Scholar 

  33. S. K. Firoz Islam and T. K. Ghosh, J. Phys.: Condens. Matter 26, 165303 (2014).

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant nos. 11747019 and 11804291), the Natural Science Foundation of Jiangsu Province (Grant no. BK20180890), the Universities Natural Science Research Project of Jiangsu Province (Grant no. 17KJB140031), the open project of National Laboratory of Solid State Microstructures of Nanjing University (Grant no. M30029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Xu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Li, X. & Qian, L. Band-Gap Sensitived Seebeck Effect in Heavy Group-IV Monolayers. Phys. Solid State 62, 2052–2057 (2020). https://doi.org/10.1134/S1063783420110402

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420110402

Keywords:

Navigation