Skip to main content
Log in

First-Principles Study on the Ferromagnetism of Mn-Doped LiZnAs Half-Heusler Compound

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We have investigated the magnetic properties of Mn-doped LiZnAs half-Heusler compound using density functional simulations within the gradient generalized approximation (GGA) with the on-site Hubbard Ueff parameter (GGA+U). A detailed study of magnetism in the two compounds GaAs and LiZnAs doped with Mn is presented. A super-cell of 64 and 96 atoms have been built for the zinc blende and the half-Heusler compounds, respectively. GGA+U calculations predict that the ferromagnetic state in LiZnAs:Mn compound with a magnetic moment of 3.51 μB per manganese is more appropriate in energy than the anti-ferromagnetic state. The topological similarity between GaAs and LiZnAs non-magnetic compounds is also confirmed in these Mn-doped systems. The band structures and densities of states show that the Mn-doped half-Heusler LiZnAs has become a dilute magnetic semiconductor with a direct gap of 0.43 eV. The cubic symmetry and distances between the dopant pairs (Mn) are two key factors to predict the character and the magnetic order of Mn-doped LiZnAs system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. Ohno, Science (Washington, DC, U. S.) 281, 951 (1998).

    Article  ADS  Google Scholar 

  2. K. Sato, P. H. Dederichs, H. Katayama-Yoshida, and J. Kudrnovsky, Phys. B (Amsterdam, Neth.) 340, 863 (2003).

  3. M. Takahashi and K. Kubo, Phys. Rev. B 66, 153202 (2002).

    Article  ADS  Google Scholar 

  4. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).

    Article  ADS  Google Scholar 

  5. J. Masek, J. Kudrnovsky, F. Maca, B. L. Gallagher, R. P. Campion, D. H. Gregory, and T. Jungwirth, Phys. Rev. Lett. 98, 067202 (2007).

    Article  ADS  Google Scholar 

  6. D. M. Wood and W. H. Strohmayer, Phys. Rev. B 71, 193201 (2005).

    Article  ADS  Google Scholar 

  7. S. Kacimi, H. Mehnane, and A. Zaoui, J. Alloys Compd. 587, 451 (2014).

    Article  Google Scholar 

  8. Z. Deng, C. Q. Jin, Q. Q. Liu, X. C. Wang, J. L. Zhu, S. M. Feng, L. C. Chen, R. C. Yu, C. Arguello, T. Goko, F. Ning, J. Zhang, Y. Wang, A. A. Aczel, T. Munsie, et al., Nat. Commun. 2, 422 (2011).

    Article  ADS  Google Scholar 

  9. Z. Deng, K. Zhao, B. Gu, W. Han, J. L. Zhu, X. C. Wang, X. Li, Q. Q. Liu, R. C. Yu, T. Goko, B. Frandsen, L. Liu, J. Zhang, Y. Wang, F. L. Ning, S. Maekawa, Y. J. Uemura, and C. Q. Jin, Phys. Rev. B 88, 81203(R) (2013).

  10. C. Ding, C. Qin, H. Man, T. Imai, and F. L. Ning, Phys. Rev. B 88, 041108(R) (2013).

  11. A.-L. Wang, Z. M. Wu, C. Wang, A. Y. Hu, and R. Y. Zhao, Acta Phys. Sin. 62, 137101 (2013).

    Google Scholar 

  12. H. L. Tao, Z. H. Zhang, L. L. Pan, M. He, and B. Song, Solid State Commun. 177, 113 (2014).

    Article  ADS  Google Scholar 

  13. H. L. Tao, L. Lin, Z. H. Zhang, M. He, and B. Song, Chem. Phys. Lett. 657, 39 (2016).

    Article  ADS  Google Scholar 

  14. X. Zhang, J. Zhang, K. Tse, S. Zhang, and J. Zhu, Phys. Rev. B 99, 134435 (2019).

    Article  ADS  Google Scholar 

  15. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, Wien2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna Univ. Technol., Vienna, 2001).

  16. E. Sjostedt, L. Nordstrom, and D. J. Singh, Solid State Commun. 114, 15 (2000).

    Article  ADS  Google Scholar 

  17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  18. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  ADS  Google Scholar 

  19. F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944).

    Article  ADS  Google Scholar 

  20. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  21. P. Mahadevan and A. Zunger, Phys. Rev. B 68, 075202 (2003).

    Article  ADS  Google Scholar 

  22. T. C. Schulthess, W. M. Temmerman, Z. Szotek, W. H. Butler, and G. M. Stocks, Nat. Mater. 4, 838 (2005).

    Article  ADS  Google Scholar 

  23. H. Peng, J. Li, and S.-H. Wei, Appl. Phys. Lett. 102, 122409 (2013).

    Article  ADS  Google Scholar 

  24. L. M. Sandratskii, P. Bruno, and J. Kudrnovsky, Phys. Rev. B 69, 195203 (2004).

    Article  ADS  Google Scholar 

  25. J. A. Chan, J. Z. Liu, H. Raebiger, S. Lany, and A. Zunger, Phys. Rev. B 78, 184109 (2008).

    Article  ADS  Google Scholar 

  26. R. Nelson, T. Berlijn, J. Moreno, M. Jarrell, and W. Ku, Phys. Rev. Lett. 115, 197203 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Algerian Directorate-General for Scientific Research and Technological Development (DGRSDT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kacimi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidi, M., Belhadj, M., Zaoui, A. et al. First-Principles Study on the Ferromagnetism of Mn-Doped LiZnAs Half-Heusler Compound. Phys. Solid State 62, 2077–2083 (2020). https://doi.org/10.1134/S106378342011027X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342011027X

Keywords:

Navigation