Skip to main content
Log in

Computationally efficient approach for solving lexicographic multicriteria optimization problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we propose a computationally efficient approach for solving complex multicriteria lexicographic optimization problems, which can be complicated by the multiextremal nature of the efficiency criteria and extensive volume of computations required to calculate the criteria values. The formulation of problems is assumed to be the subject to change as well, which, in turn, may require solving dynamically defined sets of multicriteria optimization problems. The proposed approach is based on reducing multidimensional problems to one-dimensional global optimization problems, utilizing efficient global search algorithms, and reusing the search information obtained in the process of calculations. The results of numerical experiments confirm that the proposed approach demonstrates high computational efficiency of solving multicriteria global optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. From a general point of view, the MCOlex problem can be considered as a special case of the MMCOlex problem for \(t=1\).

  2. Data ordering is reflected by using a subscript.

  3. If \(M=m+1\), then \(z_M^*\) is the minimum value of the function \(\varphi (x)\).

  4. This method is also known as the index method—see [29].

  5. The values \(r_{\nu } > 1\), \(1 \le \nu \le m+1\), are the AGCS reliability parameters used for computing the interval characteristics in (25).

References

  1. Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, New York (1999)

    MATH  Google Scholar 

  2. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, New York (2010)

    MATH  Google Scholar 

  3. Collette, Y., Siarry, P.: Multiobjective Optimization: Principles and Case Studies (Decision Engineering). Springer, New York (2011)

    MATH  Google Scholar 

  4. Marler, R.T., Arora, J.S.: Multi-Objective Optimization: Concepts and Methods for Engineering. VDM Verlag, Germany (2009)

    Google Scholar 

  5. Pardalos, P.M., Žilinskas, A., Žilinskas, J.: Non-Convex Multi-Objective Optimization. Springer, New York (2017)

    Book  MATH  Google Scholar 

  6. Marler, R., Arora, J.: Survey of multi-objective optimization methods for engineering. Struct. Multidisc. Optim. 26, 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Figueira, J., Greco, S., Ehrgott, M. (eds.): Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, New York (NY) (2005)

    MATH  Google Scholar 

  8. Zavadskas, E.K., Turskis, Z., Kildienė, S.: State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 20, 165–179 (2014)

    Article  Google Scholar 

  9. Hillermeier, C., Jahn, J.: Multiobjective optimization: survey of methods and industrial applications. Surv. Math. Ind. 11, 1–42 (2005)

    MATH  Google Scholar 

  10. Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. 44, 249–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.): Multi-Objective Optimization-Interactive and Evolutionary Approaches. Springer, Berlin (2008)

    Google Scholar 

  12. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  13. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Frome (2008)

    Google Scholar 

  14. Tan, K.C., Khor, E.F., Lee, T.H.: Multi-Objective Evolutionary Algorithms and Applications. Springer-Verlag, London (2005)

    MATH  Google Scholar 

  15. Cococcioni, M., Cudazzo, A., Pappalardo, M., Sergeyev, Y.D.: Solving the lexicographic multi-objective mixed-integer linear programming problem using branch-and-bound and grossone methodology. Commun. Nonlinear Sci. Numer. Simul. 84, 105177 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Lexicographic multi-objective linear programming using Grossone methodology: theory and algorithm. Appl. Math. Comput. 318, 298–311 (2018)

    MATH  Google Scholar 

  17. Lai, L., Fiaschi, L., Cococcioni, M.: Solving mixed Pareto-lexicographic multi-objective optimization problems: the case of priority chains. Swarm Evol. Comput. 55, 100687 (2020). https://doi.org/10.1016/j.swevo.2020.100687

    Article  Google Scholar 

  18. Zarepisheh, M., Khorram, E.: On the transformation of lexicographic nonlinear multiobjective programs to single objective programs. Math. Methods Oper. Res. 74, 217–231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Haimes, Y.Y., Lasdon, L., Wismer, D.: On a bicriterion formulation of the problem of integrated systems identification and system optimization. IEEE Trans. Syst. Man Cybern. 1, 296–297 (1971)

    MathSciNet  MATH  Google Scholar 

  20. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making: Theory and Methodology. North-Holland Series in System Science and Engineering. Elsevier, New York (NY) (1983)

    MATH  Google Scholar 

  21. Ehrgott, M., Ruzika, S.: Improved \(\varepsilon \)-constraint method for multiobjective programming. J. Optim. Theory Appl. 138, 375–396 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rastegar, N., Khorram, E.: Relaxation of constraints in lexicographic multiobjective programming problems. J. Math. Progr. Oper. Res. 64, 2111–2129 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Castro-Gutierrez, J., Landa-Silva, D., Pérez, J.M.: Improved dynamic lexicographic ordering for multi-objective optimisation. Lect. Notes Comput. Sci. 6239, 31–40 (2010)

    Google Scholar 

  24. Gergel, V.P., Kozinov, E.A.: Efficient multicriterial optimization based on intensive reuse of search information. J. Glob. Optim. 71(1), 73–90 (2018). https://doi.org/10.1007/s10898-018-0624-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Audet, C., Savard, G., Zghal, W.: Multiobjective optimization through a series of single-objective formulations. SIAM J. Optim. 19(1), 188–210 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21, 345–383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Voutchkov, I., Keane, A.: Multi-objective optimization using surrogates. Comput. Intell. Optim. Adapt. Learn. Optim. 7, 155–175 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Strongin, R.G.: Numerical Methods in Multiextremal Problems: Information-statistical Algorithms. Nauka, Moscow (1978). (in Russian)

    Google Scholar 

  29. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints. Sequential and Parallel Algorithms, 2nd edn. Kluwer Academic Publishers, Dordrecht (2013). 3 rd ed. (2014)

    MATH  Google Scholar 

  30. Törn, A., Žilinskas, A.: Global Optimization. Lecture Notes in Computer Science, vol. 350. Springer-Verlag, Berlin (1989)

    Book  MATH  Google Scholar 

  31. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer-Verlag, Berlin (1990)

    Book  MATH  Google Scholar 

  32. Zhigljavsky, A.A.: Theory of Global Random Search. Kluwer Academic Publishers, Dordrecht (1991)

    Book  Google Scholar 

  33. Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dortrecht (1996)

    Book  MATH  Google Scholar 

  34. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-filling Curves. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  35. Locatelli, M., Schoen, F.: Global Optimization: Theory, Algorithms, and Applications. SIAM, India (2013)

    Book  MATH  Google Scholar 

  36. Floudas, C.A., Pardalos, M.P.: Recent Advances in Global Optimization. Princeton University Press, Princeton (2016)

    Google Scholar 

  37. Sergeyev, Y.D., Kvasov, D.E.: Deterministic Global Optimization: An Introduction to the Diagonal Approach (Springer Briefs in Optimization). Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  38. Carr, C.R., Howe, C.W.: Quantitative Decision Procedures in Management and Economic: Deterministic Theory and Applications. McGraw-Hill, New York (1964)

    Google Scholar 

  39. Dam, E.R., Husslage, B., Hertog, D.: One-dimensional nested maximin designs. J. Glob. Optim. 46(2), 287–306 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gergel, V.P., Grishagin, V.A., Israfilov, R.A.: Adaptive dimensionality reduction in multiobjective optimization with multiextremal criteria. Lect. Notes Comput. Sci. 11331, 129–140 (2019)

    Article  Google Scholar 

  41. Grishagin, V.A., Israfilov, R.A.: Global search acceleration in the nested optimization scheme. AIP Conf. Proc. 1738, 400010 (2016). https://doi.org/10.1063/1.4952198

    Article  Google Scholar 

  42. Grishagin, V.A., Israfilov, R.A., Sergeyev, Y.D.: Comparative efficiency of dimensionality reduction schemes in global optimization. AIP Conf. Proc. 1776, 060011 (2016). https://doi.org/10.1063/1.4965345

    Article  Google Scholar 

  43. Lera, D., Sergeyev, Y.D.: Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Holder constants. Commun. Nonlinear Sci. 23(1–3), 328–342 (2015)

    Article  MATH  Google Scholar 

  44. Gergel, V.: A unified approach to use of coprocessors of various types for solving global optimization problems. In: 2nd International Conference on MACSI. 13–18 (2015). https://doi.org/10.1109/MCSI.2015.18

  45. Arora, R.K.: Optimization: Algorithms and Applications. CRC Press, Boca Raton (2015)

    Book  MATH  Google Scholar 

  46. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, Amsterdam (2006)

    Book  MATH  Google Scholar 

  47. Strongin, R.G., Gergel, V.P., Grishagin, V.A., Barkalov, K.A.: Parallel Computing in Global Optimization Problems. MSU Press, Moscow (2013). (in Russian)

    Google Scholar 

  48. Sergeyev, Y.D., Pugliese, P., Famularo, D.: Index information algorithm with local tuning for solving multidimensional global optimization problems with multiextremal constraints. Math. Progr. Ser. A 96, 489–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. Gergel, V.P., Kozinov, E.A.: Accelerating multicriterial optimization by the intensive exploitation of accumulated search data. AIP Conf. Proc. 1776, 090003 (2016). https://doi.org/10.1063/1.4965367

    Article  Google Scholar 

  50. Sysoyev, A., Barkalov, K., Gergel, V.: Globalizer: a novel supercomputer software system for solving time-consuming global optimization problems. Numer. Algebra Control. Optim. 8(1), 47–62 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Martĺ, L., Garcĺa, J., Berlanga, A., Molina, J.M.: A stopping criterion for multi-objective optimization evolutionary algorithms. Inf. Sci. 367–368, 700–718 (2016)

    Article  Google Scholar 

  52. Dilettoso, E., Rizzo, S.A., Salerno, N.: A weakly Pareto compliant quality indicator. Math. Comput. Appl. 22(1), 25 (2017)

    MathSciNet  Google Scholar 

  53. Wu, J., Azarm, S.: Metrics for quality assessment of a multiobjective design optimization solution set. J. Mech. Des. 123(1), 18–25 (2001)

    Article  Google Scholar 

  54. Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., Salomon, L.: Performance indicators in multiobjective optimization. Technical Report G-2018-90, Les cahiers du GERAD. (2018)

  55. Evtushenko, YuG, Posypkin, M.A.: A deterministic algorithm for global multi-objective optimization. Optim. Methods Softw. 29(5), 1005–1019 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Žilinskas, A., Žilinskas, J.: Adaptation of a one-step worst-case optimal univariate algorithm of bi-objective Lipschitz optimization to multidimensional problems. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 89–98 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evolut. Comput. 10(5), 477–506 (2006)

    Article  MATH  Google Scholar 

  58. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking 2009: experimental setup. INRIA Research Report RR-6829, INRIA Saclay-Ile-de-France. updated February 2010 (2009)

  59. Custódio, A.L., Madeira, J.F.A., Vaz, A.I.F., Vicente, L.N.: Direct multisearch for multiobjective optimization. SIAM J. Optim. 21(3), 1109–1140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. Brockhoff, D., Tusar, T., Auger, A., Hansen, N.: Using well-understood single-objective functions in multiobjective black-box optimization test suites. (2019) arXiv:1604.00359

  61. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  62. Kvasov, D.E., Sergeyev, Y.D.: Deterministic approaches for solving practical black-box global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)

    Article  Google Scholar 

  63. Modorskii, V., Gaynutdinova, D., Gergel, V., Barkalov, K.: Optimization in design of scientfic products for purposes of cavitation problems. AIP Conf. Proc. 1738, 400013 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement No 075-15-2020-808.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniy Kozinov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gergel, V., Kozinov, E. & Barkalov, K. Computationally efficient approach for solving lexicographic multicriteria optimization problems. Optim Lett 15, 2469–2495 (2021). https://doi.org/10.1007/s11590-020-01668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01668-y

Keywords

Navigation